{"title":"重建过去∼7400年间阿拉伯海东部大陆架的缺氧状况:多代理方法","authors":"","doi":"10.1016/j.quaint.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Shallow-sea environmental variations in the eastern Arabian Sea (EAS) have been related to monsoon variability, poorly ventilated intermediate water, and primary productivity changes. To understand these conditions, benthic foraminiferal assemblages, </span>oxygen isotope ratios<span><span>, and total organic carbon content have been examined in </span>sediment Core<span> SK291/GC13 from the EAS. We aim to retrieve decadal to centennial time-scale changes in past oxygenation and paleoproductivity during the last 7400 calibrated years before the present (cal yr BP). Our proxy data suggest that the oxic </span></span></span>benthic foraminifera<span> species were dominant during ∼7400–6000 cal yr BP. The change from oxic to dysoxic occurred during ca. 6000–3500 cal yr BP, and transition from dysoxic to suboxic environmental conditions happened at ca. ∼3500 cal yr BP. These changes are contemporaneous with weakening of the Indian summer monsoon<span><span> beginning at ∼5500 cal yr BP which culminated into a major arid phase so-called ca 4.2 ka event in the Indian subcontinent<span><span>. The EAS experienced low productivity during the early phase of our studied interval (∼7400–6000 cal yr BP) and higher productivity in the middle Holocene<span> (6000–3000 cal yr BP), as revealed by the total organic carbon and benthic assemblages. Furthermore, productivity increased in the warm period and decreased in the </span></span>Little Ice Age on a decadal scale. The spectral analysis of total organic content and suboxic species indicates a 23-year Hale (solar) cycle during the last millennium, indicating a close relationship between solar activity and monsoon variability. The strengthening of the El Nino-Southern Oscillation perhaps amplified due to increased solar activity in the last millennium, which influenced the climate of the EAS. The study highlights paleo-oxygenation shifts based on benthic foraminiferal assemblages, which are crucial for understanding changes in the oxygen minimum zones (OMZs) and their potential impacts on </span></span>marine ecosystems.</span></span></p></div>","PeriodicalId":49644,"journal":{"name":"Quaternary International","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstructing hypoxia on the eastern Arabian sea continental shelf during the past ∼7400 years: A multi-proxy approach\",\"authors\":\"\",\"doi\":\"10.1016/j.quaint.2024.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>Shallow-sea environmental variations in the eastern Arabian Sea (EAS) have been related to monsoon variability, poorly ventilated intermediate water, and primary productivity changes. To understand these conditions, benthic foraminiferal assemblages, </span>oxygen isotope ratios<span><span>, and total organic carbon content have been examined in </span>sediment Core<span> SK291/GC13 from the EAS. We aim to retrieve decadal to centennial time-scale changes in past oxygenation and paleoproductivity during the last 7400 calibrated years before the present (cal yr BP). Our proxy data suggest that the oxic </span></span></span>benthic foraminifera<span> species were dominant during ∼7400–6000 cal yr BP. The change from oxic to dysoxic occurred during ca. 6000–3500 cal yr BP, and transition from dysoxic to suboxic environmental conditions happened at ca. ∼3500 cal yr BP. These changes are contemporaneous with weakening of the Indian summer monsoon<span><span> beginning at ∼5500 cal yr BP which culminated into a major arid phase so-called ca 4.2 ka event in the Indian subcontinent<span><span>. The EAS experienced low productivity during the early phase of our studied interval (∼7400–6000 cal yr BP) and higher productivity in the middle Holocene<span> (6000–3000 cal yr BP), as revealed by the total organic carbon and benthic assemblages. Furthermore, productivity increased in the warm period and decreased in the </span></span>Little Ice Age on a decadal scale. The spectral analysis of total organic content and suboxic species indicates a 23-year Hale (solar) cycle during the last millennium, indicating a close relationship between solar activity and monsoon variability. The strengthening of the El Nino-Southern Oscillation perhaps amplified due to increased solar activity in the last millennium, which influenced the climate of the EAS. The study highlights paleo-oxygenation shifts based on benthic foraminiferal assemblages, which are crucial for understanding changes in the oxygen minimum zones (OMZs) and their potential impacts on </span></span>marine ecosystems.</span></span></p></div>\",\"PeriodicalId\":49644,\"journal\":{\"name\":\"Quaternary International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaternary International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1040618224001630\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary International","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040618224001630","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
东阿拉伯海(EAS)的浅海环境变化与季风变化、通风不良的中层水和初级生产力变化有关。为了了解这些情况,我们对东亚海域的沉积物岩芯 SK291/GC13 中的底栖有孔虫组合、氧同位素比率和总有机碳含量进行了研究。我们的目标是检索距今 7400 校准年(公元前 7400 年)期间过去氧合作用和古生产率的十年至百年时间尺度变化。我们的代用数据表明,在公元前7400-6000年期间,有孔虫类中的有氧底栖生物占主导地位。从缺氧到缺氧的变化发生在约 6000-3500 卡元 BP 期间,从缺氧到亚缺氧环境条件的过渡发生在约 ∼3500 卡元 BP 期间。这些变化与印度夏季季风的减弱同时发生,印度夏季季风的减弱始于约公元前5500年,最终在印度次大陆形成了所谓的约4.2 ka干旱阶段。从总有机碳和底栖生物组合来看,EAS 在研究区间的早期(7400-6000 卡年 BP)生产力较低,而在全新世中期(6000-3000 卡年 BP)生产力较高。此外,就十年尺度而言,生产力在温暖时期上升,在小冰河时期下降。对总有机碳含量和亚氧物种的光谱分析表明,在过去的一千年中,海尔(太阳)周期为 23 年,这表明太阳活动与季风变化之间存在密切关系。厄尔尼诺-南方涛动的加强可能是由于上一个千年太阳活动的增加而放大,从而影响了 EAS 的气候。该研究强调了基于底栖有孔虫组合的古氧变化,这对于了解最小含氧区(OMZ)的变化及其对海洋生态系统的潜在影响至关重要。
Reconstructing hypoxia on the eastern Arabian sea continental shelf during the past ∼7400 years: A multi-proxy approach
Shallow-sea environmental variations in the eastern Arabian Sea (EAS) have been related to monsoon variability, poorly ventilated intermediate water, and primary productivity changes. To understand these conditions, benthic foraminiferal assemblages, oxygen isotope ratios, and total organic carbon content have been examined in sediment Core SK291/GC13 from the EAS. We aim to retrieve decadal to centennial time-scale changes in past oxygenation and paleoproductivity during the last 7400 calibrated years before the present (cal yr BP). Our proxy data suggest that the oxic benthic foraminifera species were dominant during ∼7400–6000 cal yr BP. The change from oxic to dysoxic occurred during ca. 6000–3500 cal yr BP, and transition from dysoxic to suboxic environmental conditions happened at ca. ∼3500 cal yr BP. These changes are contemporaneous with weakening of the Indian summer monsoon beginning at ∼5500 cal yr BP which culminated into a major arid phase so-called ca 4.2 ka event in the Indian subcontinent. The EAS experienced low productivity during the early phase of our studied interval (∼7400–6000 cal yr BP) and higher productivity in the middle Holocene (6000–3000 cal yr BP), as revealed by the total organic carbon and benthic assemblages. Furthermore, productivity increased in the warm period and decreased in the Little Ice Age on a decadal scale. The spectral analysis of total organic content and suboxic species indicates a 23-year Hale (solar) cycle during the last millennium, indicating a close relationship between solar activity and monsoon variability. The strengthening of the El Nino-Southern Oscillation perhaps amplified due to increased solar activity in the last millennium, which influenced the climate of the EAS. The study highlights paleo-oxygenation shifts based on benthic foraminiferal assemblages, which are crucial for understanding changes in the oxygen minimum zones (OMZs) and their potential impacts on marine ecosystems.
期刊介绍:
Quaternary International is the official journal of the International Union for Quaternary Research. The objectives are to publish a high quality scientific journal under the auspices of the premier Quaternary association that reflects the interdisciplinary nature of INQUA and records recent advances in Quaternary science that appeal to a wide audience.
This series will encompass all the full spectrum of the physical and natural sciences that are commonly employed in solving Quaternary problems. The policy is to publish peer refereed collected research papers from symposia, workshops and meetings sponsored by INQUA. In addition, other organizations may request publication of their collected works pertaining to the Quaternary.