Filipe Maciel , Allan M. de Souza , Luiz F. Bittencourt , Leandro A. Villas , Torsten Braun
{"title":"通过客户端选择实现联合学习节能","authors":"Filipe Maciel , Allan M. de Souza , Luiz F. Bittencourt , Leandro A. Villas , Torsten Braun","doi":"10.1016/j.pmcj.2024.101948","DOIUrl":null,"url":null,"abstract":"<div><p>Contemporary applications leverage machine learning models to optimize performance, often necessitating data transmission to a remote server for training. However, this approach entails significant resource consumption. A privacy concern arises, which Federated Learning addresses through a cyclical process involving in-device training (local model update) and subsequent reporting to the server for aggregation (global model update). In each iteration of this cycle, termed a communication round, a client selection component determines participant devices contributing to global model enhancement. However, existing literature inadequately addresses scenarios where optimized energy consumption is imperative. This paper introduces an Energy Saving Client Selection (ESCS) mechanism, considering decision criteria such as battery level, training time capacity, and network quality. As a pertinent use case, classification scenarios are utilized to compare the performance of ESCS against other state-of-the-art approaches. The findings reveal that ESCS effectively conserves energy while maintaining optimal performance. This research contributes to the ongoing discourse on energy-efficient client selection strategies within the domain of Federated Learning.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"103 ","pages":"Article 101948"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated learning energy saving through client selection\",\"authors\":\"Filipe Maciel , Allan M. de Souza , Luiz F. Bittencourt , Leandro A. Villas , Torsten Braun\",\"doi\":\"10.1016/j.pmcj.2024.101948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Contemporary applications leverage machine learning models to optimize performance, often necessitating data transmission to a remote server for training. However, this approach entails significant resource consumption. A privacy concern arises, which Federated Learning addresses through a cyclical process involving in-device training (local model update) and subsequent reporting to the server for aggregation (global model update). In each iteration of this cycle, termed a communication round, a client selection component determines participant devices contributing to global model enhancement. However, existing literature inadequately addresses scenarios where optimized energy consumption is imperative. This paper introduces an Energy Saving Client Selection (ESCS) mechanism, considering decision criteria such as battery level, training time capacity, and network quality. As a pertinent use case, classification scenarios are utilized to compare the performance of ESCS against other state-of-the-art approaches. The findings reveal that ESCS effectively conserves energy while maintaining optimal performance. This research contributes to the ongoing discourse on energy-efficient client selection strategies within the domain of Federated Learning.</p></div>\",\"PeriodicalId\":49005,\"journal\":{\"name\":\"Pervasive and Mobile Computing\",\"volume\":\"103 \",\"pages\":\"Article 101948\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pervasive and Mobile Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574119224000749\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000749","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Federated learning energy saving through client selection
Contemporary applications leverage machine learning models to optimize performance, often necessitating data transmission to a remote server for training. However, this approach entails significant resource consumption. A privacy concern arises, which Federated Learning addresses through a cyclical process involving in-device training (local model update) and subsequent reporting to the server for aggregation (global model update). In each iteration of this cycle, termed a communication round, a client selection component determines participant devices contributing to global model enhancement. However, existing literature inadequately addresses scenarios where optimized energy consumption is imperative. This paper introduces an Energy Saving Client Selection (ESCS) mechanism, considering decision criteria such as battery level, training time capacity, and network quality. As a pertinent use case, classification scenarios are utilized to compare the performance of ESCS against other state-of-the-art approaches. The findings reveal that ESCS effectively conserves energy while maintaining optimal performance. This research contributes to the ongoing discourse on energy-efficient client selection strategies within the domain of Federated Learning.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.