Pei Li , Yong Zhang , Yong Zhou , Chunbao Li , Wei Luo , Xin Gou , Jun Yang , Lei Xie
{"title":"受表皮启发自组装的离子电子泡沫,灵敏度高、范围广","authors":"Pei Li , Yong Zhang , Yong Zhou , Chunbao Li , Wei Luo , Xin Gou , Jun Yang , Lei Xie","doi":"10.1016/j.nanoms.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>Electronic skin has showcased superior sensing capabilities inspired from human skin. However, most preceding studies focused on the dermis of the skin rather than the epidermis. In particular, the pseudo-porous structural domain of the epidermis increases the skin's tolerance while ensuring its susceptibility to touch. Yet, most endeavors on the porous structures failed to replicate the superior sensing performance of skin-like counterparts in terms of sensitivity and/or detection range. Stimulated by the strategy that the epidermis of the skin absorbs energy while producing ionic conduction to the nerves, this work initiatively introduced an easy-to-produce, and low-cost pressure sensor based on ionic-gel foam, and achieved a high sensitivity (2893 kPa<sup>−1</sup>) within a wide pressure range (up to ∼1 MPa), which ranked among the best cases thus far. Moreover, the factors affecting the sensor performance were explored while the sensing principles were enriched. Inspiringly, the plantar pressure measurement by harnessing the as-prepared sensor unveiled an ultra-broad detection range (100 Pa-1 MPa), thus delivering a huge application potential in the field of robot and health monitoring.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"7 3","pages":"Pages 383-391"},"PeriodicalIF":17.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epidermis inspired self-assembled iontronic foam with high sensitivity and broad range\",\"authors\":\"Pei Li , Yong Zhang , Yong Zhou , Chunbao Li , Wei Luo , Xin Gou , Jun Yang , Lei Xie\",\"doi\":\"10.1016/j.nanoms.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electronic skin has showcased superior sensing capabilities inspired from human skin. However, most preceding studies focused on the dermis of the skin rather than the epidermis. In particular, the pseudo-porous structural domain of the epidermis increases the skin's tolerance while ensuring its susceptibility to touch. Yet, most endeavors on the porous structures failed to replicate the superior sensing performance of skin-like counterparts in terms of sensitivity and/or detection range. Stimulated by the strategy that the epidermis of the skin absorbs energy while producing ionic conduction to the nerves, this work initiatively introduced an easy-to-produce, and low-cost pressure sensor based on ionic-gel foam, and achieved a high sensitivity (2893 kPa<sup>−1</sup>) within a wide pressure range (up to ∼1 MPa), which ranked among the best cases thus far. Moreover, the factors affecting the sensor performance were explored while the sensing principles were enriched. Inspiringly, the plantar pressure measurement by harnessing the as-prepared sensor unveiled an ultra-broad detection range (100 Pa-1 MPa), thus delivering a huge application potential in the field of robot and health monitoring.</div></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"7 3\",\"pages\":\"Pages 383-391\"},\"PeriodicalIF\":17.9000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965124000692\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124000692","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Epidermis inspired self-assembled iontronic foam with high sensitivity and broad range
Electronic skin has showcased superior sensing capabilities inspired from human skin. However, most preceding studies focused on the dermis of the skin rather than the epidermis. In particular, the pseudo-porous structural domain of the epidermis increases the skin's tolerance while ensuring its susceptibility to touch. Yet, most endeavors on the porous structures failed to replicate the superior sensing performance of skin-like counterparts in terms of sensitivity and/or detection range. Stimulated by the strategy that the epidermis of the skin absorbs energy while producing ionic conduction to the nerves, this work initiatively introduced an easy-to-produce, and low-cost pressure sensor based on ionic-gel foam, and achieved a high sensitivity (2893 kPa−1) within a wide pressure range (up to ∼1 MPa), which ranked among the best cases thus far. Moreover, the factors affecting the sensor performance were explored while the sensing principles were enriched. Inspiringly, the plantar pressure measurement by harnessing the as-prepared sensor unveiled an ultra-broad detection range (100 Pa-1 MPa), thus delivering a huge application potential in the field of robot and health monitoring.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.