Xiaoyue Yuan , Wenjun Liu , Guangying Lv , Ali Moussaoui , Pierre Auger
{"title":"通过海洋保护区和税收对受阿利效应影响的捕食性鱼类进行可持续管理","authors":"Xiaoyue Yuan , Wenjun Liu , Guangying Lv , Ali Moussaoui , Pierre Auger","doi":"10.1016/j.mbs.2024.109220","DOIUrl":null,"url":null,"abstract":"<div><p>Ecological balance and stable economic development are crucial for the fishery. This study proposes a predator–prey system for marine communities, where the growth of predators follows the Allee effect and takes into account the rapid fluctuations in resource prices caused by supply and demand. The system predicts the existence of catastrophic equilibrium, which may lead to the extinction of prey, consequently leading to the extinction of predators, but fishing efforts remain high. Marine protected areas are established near fishing areas to avoid such situations. Fish migrate rapidly between these two areas and are only harvested in the nonprotected areas. A three-dimensional simplified model is derived by applying variable aggregation to describe the variation of global variables on a slow time scale. To seek conditions to avoid species extinction and maintain sustainable fishing activities, the existence of positive equilibrium points and their local stability are explored based on the simplified model. Moreover, the long-term impact of establishing marine protected areas and levying taxes based on unit catch on fishery dynamics is studied, and the optimal tax policy is obtained by applying Pontryagin’s maximum principle. The theoretical analysis and numerical examples of this study demonstrate the comprehensive effectiveness of increasing the proportion of marine protected areas and controlling taxes on the sustainable development of fishery.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"373 ","pages":"Article 109220"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable management of predatory fish affected by an Allee effect through marine protected areas and taxation\",\"authors\":\"Xiaoyue Yuan , Wenjun Liu , Guangying Lv , Ali Moussaoui , Pierre Auger\",\"doi\":\"10.1016/j.mbs.2024.109220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ecological balance and stable economic development are crucial for the fishery. This study proposes a predator–prey system for marine communities, where the growth of predators follows the Allee effect and takes into account the rapid fluctuations in resource prices caused by supply and demand. The system predicts the existence of catastrophic equilibrium, which may lead to the extinction of prey, consequently leading to the extinction of predators, but fishing efforts remain high. Marine protected areas are established near fishing areas to avoid such situations. Fish migrate rapidly between these two areas and are only harvested in the nonprotected areas. A three-dimensional simplified model is derived by applying variable aggregation to describe the variation of global variables on a slow time scale. To seek conditions to avoid species extinction and maintain sustainable fishing activities, the existence of positive equilibrium points and their local stability are explored based on the simplified model. Moreover, the long-term impact of establishing marine protected areas and levying taxes based on unit catch on fishery dynamics is studied, and the optimal tax policy is obtained by applying Pontryagin’s maximum principle. The theoretical analysis and numerical examples of this study demonstrate the comprehensive effectiveness of increasing the proportion of marine protected areas and controlling taxes on the sustainable development of fishery.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"373 \",\"pages\":\"Article 109220\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556424000804\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000804","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Sustainable management of predatory fish affected by an Allee effect through marine protected areas and taxation
Ecological balance and stable economic development are crucial for the fishery. This study proposes a predator–prey system for marine communities, where the growth of predators follows the Allee effect and takes into account the rapid fluctuations in resource prices caused by supply and demand. The system predicts the existence of catastrophic equilibrium, which may lead to the extinction of prey, consequently leading to the extinction of predators, but fishing efforts remain high. Marine protected areas are established near fishing areas to avoid such situations. Fish migrate rapidly between these two areas and are only harvested in the nonprotected areas. A three-dimensional simplified model is derived by applying variable aggregation to describe the variation of global variables on a slow time scale. To seek conditions to avoid species extinction and maintain sustainable fishing activities, the existence of positive equilibrium points and their local stability are explored based on the simplified model. Moreover, the long-term impact of establishing marine protected areas and levying taxes based on unit catch on fishery dynamics is studied, and the optimal tax policy is obtained by applying Pontryagin’s maximum principle. The theoretical analysis and numerical examples of this study demonstrate the comprehensive effectiveness of increasing the proportion of marine protected areas and controlling taxes on the sustainable development of fishery.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.