大肠杆菌 W3110 以醋酸盐为底物持续生产高丝氨酸和苏氨酸:模块化代谢工程方法

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Toan Minh Vo, Joon Young Park, Donghyuk Kim, Sunghoon Park
{"title":"大肠杆菌 W3110 以醋酸盐为底物持续生产高丝氨酸和苏氨酸:模块化代谢工程方法","authors":"Toan Minh Vo,&nbsp;Joon Young Park,&nbsp;Donghyuk Kim,&nbsp;Sunghoon Park","doi":"10.1016/j.ymben.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>Acetate, a promising yet underutilized carbon source for biological production, was explored for the efficient production of homoserine and threonine in <em>Escherichia coli</em> W. A modular metabolic engineering approach revealed the crucial roles of both acetate assimilation pathways (AckA/Pta and Acs), optimized TCA cycle flux and glyoxylate shunt activity, and enhanced CoA availability, mediated by increased pantothenate kinase activity, for efficient homoserine production. The engineered strain W–H22/pM2/pR1P exhibited a high acetate assimilation rate (5.47 mmol/g cell/h) and produced 44.1 g/L homoserine in 52 h with a 53% theoretical yield (0.18 mol/mol) in fed-batch fermentation. Similarly, strain W–H31/pM2/pR1P achieved 45.8 g/L threonine in 52 h with a 65% yield (0.22 mol/mol). These results represent the highest reported levels of amino acid production using acetate, highlighting its potential as a valuable and sustainable feedstock for biomanufacturing.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of acetate as substrate for sustainable production of homoserine and threonine by Escherichia coli W3110: A modular metabolic engineering approach\",\"authors\":\"Toan Minh Vo,&nbsp;Joon Young Park,&nbsp;Donghyuk Kim,&nbsp;Sunghoon Park\",\"doi\":\"10.1016/j.ymben.2024.05.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acetate, a promising yet underutilized carbon source for biological production, was explored for the efficient production of homoserine and threonine in <em>Escherichia coli</em> W. A modular metabolic engineering approach revealed the crucial roles of both acetate assimilation pathways (AckA/Pta and Acs), optimized TCA cycle flux and glyoxylate shunt activity, and enhanced CoA availability, mediated by increased pantothenate kinase activity, for efficient homoserine production. The engineered strain W–H22/pM2/pR1P exhibited a high acetate assimilation rate (5.47 mmol/g cell/h) and produced 44.1 g/L homoserine in 52 h with a 53% theoretical yield (0.18 mol/mol) in fed-batch fermentation. Similarly, strain W–H31/pM2/pR1P achieved 45.8 g/L threonine in 52 h with a 65% yield (0.22 mol/mol). These results represent the highest reported levels of amino acid production using acetate, highlighting its potential as a valuable and sustainable feedstock for biomanufacturing.</p></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096717624000703\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000703","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

醋酸盐是一种很有前景但却未得到充分利用的生物生产碳源,研究人员探索了如何在大肠杆菌 W 中高效生产高丝氨酸和苏氨酸。模块化代谢工程方法揭示了乙酸同化途径(AckA/Pta 和 Acs)、优化的 TCA 循环通量和乙醛酸分流活性以及泛酸激酶活性的提高所促进的 CoA 供应对高效生产高丝氨酸的关键作用。工程菌株 W-H22/pM2/pR1P 表现出很高的醋酸同化率(5.47 mmol/g cell/h),在喂养式批量发酵中,52 小时内产生 44.1 g/L 高丝氨酸,理论产量为 53%(0.18 mol/mol)。同样,菌株 W-H31/pM2/pR1P 在 52 小时内产生了 45.8 克/升苏氨酸,产量为 65%(0.22 摩尔/摩尔)。这些结果代表了已报道的利用醋酸生产氨基酸的最高水平,凸显了醋酸作为一种有价值和可持续的生物制造原料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of acetate as substrate for sustainable production of homoserine and threonine by Escherichia coli W3110: A modular metabolic engineering approach

Acetate, a promising yet underutilized carbon source for biological production, was explored for the efficient production of homoserine and threonine in Escherichia coli W. A modular metabolic engineering approach revealed the crucial roles of both acetate assimilation pathways (AckA/Pta and Acs), optimized TCA cycle flux and glyoxylate shunt activity, and enhanced CoA availability, mediated by increased pantothenate kinase activity, for efficient homoserine production. The engineered strain W–H22/pM2/pR1P exhibited a high acetate assimilation rate (5.47 mmol/g cell/h) and produced 44.1 g/L homoserine in 52 h with a 53% theoretical yield (0.18 mol/mol) in fed-batch fermentation. Similarly, strain W–H31/pM2/pR1P achieved 45.8 g/L threonine in 52 h with a 65% yield (0.22 mol/mol). These results represent the highest reported levels of amino acid production using acetate, highlighting its potential as a valuable and sustainable feedstock for biomanufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信