{"title":"用于异相催化的纳米结构氧化铁","authors":"Di Zhou, Yan Zhou, Yong Li, Wenjie Shen","doi":"10.1016/j.enchem.2024.100124","DOIUrl":null,"url":null,"abstract":"<div><p>Modulating the shape and crystal-phase of nano-sized iron-oxide particles play an essential role in the design of highly efficient heterogeneous catalysts. Iron oxides usually present as hematite (α-Fe<sub>2</sub>O<sub>3</sub>), maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>), and magnetite (Fe<sub>3</sub>O<sub>4</sub>), where the coordination environments of Fe and O vary considerably. The diversity structures of iron oxides, in terms of chemical composition, particle size/shape, and crystal-phase, favor a flexible mediation on the geometric and electronic characters of surface Fe and O atoms that are intimately linked to the active sites for catalysis. Tuning the crystal-phase of size/shape-specified FeO<sub>x</sub> particles alters the arrangements of Fe and O atoms both in the bulk and on the surface. While tailoring the particle shape, in a specific crystal-phase, enables to expose the more reactive facets featured by unique arrangements of Fe and O atoms. All these strategies could maximize the number of active sites for catalysis and regulate the adsorption and activation manner of reacting molecules. In addition, the shape and crystal-phase of FeO<sub>x</sub> particles, when they are used to support the catalytically more active precious metals, affect the dispersion of the precious-metals via interfacial bonding and charge transfer. In this context, the precious-metals would show distinct electronic features via interaction with iron oxides, while their interfacial bonding is governed by the surface properties of iron oxides. Among them, precious-metal single-atoms, anchored on iron oxides, are characterized by the isolated sites, but a straightforward correlation between their electronic and geometric structures and the catalytic properties is controversial. Alternatively, inverse structures (iron-oxide layers on precious -metal particles) and core-shell geometries (a precious-metal core and an oxide shell) enable to construct active interfaces and describe the geometric and electronic characters. Moreover, the dynamic behavior of precious-metal-support interfaces, under reactive gases and at high temperatures, would provide accurate and realistic evidences for revealing the intrinsic structure-reactivity relationships.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"6 4","pages":"Article 100124"},"PeriodicalIF":22.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructured iron oxides for heterogeneous catalysis\",\"authors\":\"Di Zhou, Yan Zhou, Yong Li, Wenjie Shen\",\"doi\":\"10.1016/j.enchem.2024.100124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modulating the shape and crystal-phase of nano-sized iron-oxide particles play an essential role in the design of highly efficient heterogeneous catalysts. Iron oxides usually present as hematite (α-Fe<sub>2</sub>O<sub>3</sub>), maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>), and magnetite (Fe<sub>3</sub>O<sub>4</sub>), where the coordination environments of Fe and O vary considerably. The diversity structures of iron oxides, in terms of chemical composition, particle size/shape, and crystal-phase, favor a flexible mediation on the geometric and electronic characters of surface Fe and O atoms that are intimately linked to the active sites for catalysis. Tuning the crystal-phase of size/shape-specified FeO<sub>x</sub> particles alters the arrangements of Fe and O atoms both in the bulk and on the surface. While tailoring the particle shape, in a specific crystal-phase, enables to expose the more reactive facets featured by unique arrangements of Fe and O atoms. All these strategies could maximize the number of active sites for catalysis and regulate the adsorption and activation manner of reacting molecules. In addition, the shape and crystal-phase of FeO<sub>x</sub> particles, when they are used to support the catalytically more active precious metals, affect the dispersion of the precious-metals via interfacial bonding and charge transfer. In this context, the precious-metals would show distinct electronic features via interaction with iron oxides, while their interfacial bonding is governed by the surface properties of iron oxides. Among them, precious-metal single-atoms, anchored on iron oxides, are characterized by the isolated sites, but a straightforward correlation between their electronic and geometric structures and the catalytic properties is controversial. Alternatively, inverse structures (iron-oxide layers on precious -metal particles) and core-shell geometries (a precious-metal core and an oxide shell) enable to construct active interfaces and describe the geometric and electronic characters. Moreover, the dynamic behavior of precious-metal-support interfaces, under reactive gases and at high temperatures, would provide accurate and realistic evidences for revealing the intrinsic structure-reactivity relationships.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"6 4\",\"pages\":\"Article 100124\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778024000083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778024000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nanostructured iron oxides for heterogeneous catalysis
Modulating the shape and crystal-phase of nano-sized iron-oxide particles play an essential role in the design of highly efficient heterogeneous catalysts. Iron oxides usually present as hematite (α-Fe2O3), maghemite (γ-Fe2O3), and magnetite (Fe3O4), where the coordination environments of Fe and O vary considerably. The diversity structures of iron oxides, in terms of chemical composition, particle size/shape, and crystal-phase, favor a flexible mediation on the geometric and electronic characters of surface Fe and O atoms that are intimately linked to the active sites for catalysis. Tuning the crystal-phase of size/shape-specified FeOx particles alters the arrangements of Fe and O atoms both in the bulk and on the surface. While tailoring the particle shape, in a specific crystal-phase, enables to expose the more reactive facets featured by unique arrangements of Fe and O atoms. All these strategies could maximize the number of active sites for catalysis and regulate the adsorption and activation manner of reacting molecules. In addition, the shape and crystal-phase of FeOx particles, when they are used to support the catalytically more active precious metals, affect the dispersion of the precious-metals via interfacial bonding and charge transfer. In this context, the precious-metals would show distinct electronic features via interaction with iron oxides, while their interfacial bonding is governed by the surface properties of iron oxides. Among them, precious-metal single-atoms, anchored on iron oxides, are characterized by the isolated sites, but a straightforward correlation between their electronic and geometric structures and the catalytic properties is controversial. Alternatively, inverse structures (iron-oxide layers on precious -metal particles) and core-shell geometries (a precious-metal core and an oxide shell) enable to construct active interfaces and describe the geometric and electronic characters. Moreover, the dynamic behavior of precious-metal-support interfaces, under reactive gases and at high temperatures, would provide accurate and realistic evidences for revealing the intrinsic structure-reactivity relationships.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage