Zixuan Yang , Lei Shi , Minhui Zheng , Minbo Hou , Mengdi Zhou , Naying Su , Hui Lang , Liyuan Zhao , Mengyun Gu , Naping Tang , Yan Chang
{"title":"外泌体 lncRNA 在对乙酰氨基酚诱导的 SD 大鼠肝损伤中的作用","authors":"Zixuan Yang , Lei Shi , Minhui Zheng , Minbo Hou , Mengdi Zhou , Naying Su , Hui Lang , Liyuan Zhao , Mengyun Gu , Naping Tang , Yan Chang","doi":"10.1016/j.ncrna.2024.05.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Drug-induced liver injury (DILI) is a leading cause of drug development failures during clinical trials and post-market introduction. Current biomarkers, such as ALT and AST, lack the necessary specificity and sensitivity needed for accurate detection. Exosomes, which protect LncRNAs from RNase degradation, could provide reliable and easily accessible options for biomarkers.</p></div><div><h3>Materials and methods</h3><p>RNA-sequencing was used to identify differentially expressed LncRNAs (DE-LncRNAs), followed by isolation of LncRNAs from plasma exosomes in this study. Exosome characterization was conducted by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot (WB). Bioinformatics analysis included functional enrichment and co-expression network analysis. Five rat models were established, and quantitative real-time PCR was used to verify the specificity and sensitivity of two candidate exosomal LncRNAs.</p></div><div><h3>Results</h3><p>The APAP-induced hepatocellular injury model was successfully established for RNA-sequencing, leading to the identification of several differentially expressed exosomal LncRNAs. Eight upregulated exosomal DE-LncRNAs were selected for validation. Among them, NONRATT018001.2 (p < 0.05) and MSTRG.73954.4 (p < 0.05) exhibited a more than 2-fold increase in expression levels. In hepatocellular injury and intrahepatic cholestasis models, both NONRATT018001.2 and MSTRG.73954.4 showed earlier increases compared to serum biomarkers ALT and AST. However, no histological changes were observed until the final time point. In the fatty liver model, NONRATT018001.2 and MSTRG.73954.4 increased earlier than ALT and AST at 21 days. By the 7th day, minor steatosis was evident in liver tissue, while the expression levels of the two candidate exosomal LncRNAs exceeded 2 and 4 times, respectively. In the hepatic fibrosis model, NONRATT018001.2 and MSTRG.73954.4 showed increases at every time point. By the 49th day, hepatocellular necrosis and fibrosis were observed in the liver tissue, with NONRATT018001.2 showing an increase of more than 8 times. The specificity of the identified exosomal DE-LncRNAs was verified using a myocardial injury model and they showed no significant differences between the case and control groups.</p></div><div><h3>Conclusion</h3><p>NONRATT018001.2 and MSTRG.73954.4 hold potential as biomarkers for distinguishing different types of organ injury induced by drugs, particularly enabling early prediction of liver injury. Further experiments, such as siRNA interference or gene knockout, are warranted to explore the underlying mechanisms of these LncRNAs.</p></div>","PeriodicalId":37653,"journal":{"name":"Non-coding RNA Research","volume":"9 4","pages":"Pages 1190-1202"},"PeriodicalIF":5.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468054024000982/pdfft?md5=99bf31ed65297c6245a8335c8ecab905&pid=1-s2.0-S2468054024000982-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The role of exosomal lncRNAs in acetaminophen-induced induced liver injury in SD rats\",\"authors\":\"Zixuan Yang , Lei Shi , Minhui Zheng , Minbo Hou , Mengdi Zhou , Naying Su , Hui Lang , Liyuan Zhao , Mengyun Gu , Naping Tang , Yan Chang\",\"doi\":\"10.1016/j.ncrna.2024.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Drug-induced liver injury (DILI) is a leading cause of drug development failures during clinical trials and post-market introduction. Current biomarkers, such as ALT and AST, lack the necessary specificity and sensitivity needed for accurate detection. Exosomes, which protect LncRNAs from RNase degradation, could provide reliable and easily accessible options for biomarkers.</p></div><div><h3>Materials and methods</h3><p>RNA-sequencing was used to identify differentially expressed LncRNAs (DE-LncRNAs), followed by isolation of LncRNAs from plasma exosomes in this study. Exosome characterization was conducted by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot (WB). Bioinformatics analysis included functional enrichment and co-expression network analysis. Five rat models were established, and quantitative real-time PCR was used to verify the specificity and sensitivity of two candidate exosomal LncRNAs.</p></div><div><h3>Results</h3><p>The APAP-induced hepatocellular injury model was successfully established for RNA-sequencing, leading to the identification of several differentially expressed exosomal LncRNAs. Eight upregulated exosomal DE-LncRNAs were selected for validation. Among them, NONRATT018001.2 (p < 0.05) and MSTRG.73954.4 (p < 0.05) exhibited a more than 2-fold increase in expression levels. In hepatocellular injury and intrahepatic cholestasis models, both NONRATT018001.2 and MSTRG.73954.4 showed earlier increases compared to serum biomarkers ALT and AST. However, no histological changes were observed until the final time point. In the fatty liver model, NONRATT018001.2 and MSTRG.73954.4 increased earlier than ALT and AST at 21 days. By the 7th day, minor steatosis was evident in liver tissue, while the expression levels of the two candidate exosomal LncRNAs exceeded 2 and 4 times, respectively. In the hepatic fibrosis model, NONRATT018001.2 and MSTRG.73954.4 showed increases at every time point. By the 49th day, hepatocellular necrosis and fibrosis were observed in the liver tissue, with NONRATT018001.2 showing an increase of more than 8 times. The specificity of the identified exosomal DE-LncRNAs was verified using a myocardial injury model and they showed no significant differences between the case and control groups.</p></div><div><h3>Conclusion</h3><p>NONRATT018001.2 and MSTRG.73954.4 hold potential as biomarkers for distinguishing different types of organ injury induced by drugs, particularly enabling early prediction of liver injury. Further experiments, such as siRNA interference or gene knockout, are warranted to explore the underlying mechanisms of these LncRNAs.</p></div>\",\"PeriodicalId\":37653,\"journal\":{\"name\":\"Non-coding RNA Research\",\"volume\":\"9 4\",\"pages\":\"Pages 1190-1202\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468054024000982/pdfft?md5=99bf31ed65297c6245a8335c8ecab905&pid=1-s2.0-S2468054024000982-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-coding RNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468054024000982\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-coding RNA Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468054024000982","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The role of exosomal lncRNAs in acetaminophen-induced induced liver injury in SD rats
Background
Drug-induced liver injury (DILI) is a leading cause of drug development failures during clinical trials and post-market introduction. Current biomarkers, such as ALT and AST, lack the necessary specificity and sensitivity needed for accurate detection. Exosomes, which protect LncRNAs from RNase degradation, could provide reliable and easily accessible options for biomarkers.
Materials and methods
RNA-sequencing was used to identify differentially expressed LncRNAs (DE-LncRNAs), followed by isolation of LncRNAs from plasma exosomes in this study. Exosome characterization was conducted by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot (WB). Bioinformatics analysis included functional enrichment and co-expression network analysis. Five rat models were established, and quantitative real-time PCR was used to verify the specificity and sensitivity of two candidate exosomal LncRNAs.
Results
The APAP-induced hepatocellular injury model was successfully established for RNA-sequencing, leading to the identification of several differentially expressed exosomal LncRNAs. Eight upregulated exosomal DE-LncRNAs were selected for validation. Among them, NONRATT018001.2 (p < 0.05) and MSTRG.73954.4 (p < 0.05) exhibited a more than 2-fold increase in expression levels. In hepatocellular injury and intrahepatic cholestasis models, both NONRATT018001.2 and MSTRG.73954.4 showed earlier increases compared to serum biomarkers ALT and AST. However, no histological changes were observed until the final time point. In the fatty liver model, NONRATT018001.2 and MSTRG.73954.4 increased earlier than ALT and AST at 21 days. By the 7th day, minor steatosis was evident in liver tissue, while the expression levels of the two candidate exosomal LncRNAs exceeded 2 and 4 times, respectively. In the hepatic fibrosis model, NONRATT018001.2 and MSTRG.73954.4 showed increases at every time point. By the 49th day, hepatocellular necrosis and fibrosis were observed in the liver tissue, with NONRATT018001.2 showing an increase of more than 8 times. The specificity of the identified exosomal DE-LncRNAs was verified using a myocardial injury model and they showed no significant differences between the case and control groups.
Conclusion
NONRATT018001.2 and MSTRG.73954.4 hold potential as biomarkers for distinguishing different types of organ injury induced by drugs, particularly enabling early prediction of liver injury. Further experiments, such as siRNA interference or gene knockout, are warranted to explore the underlying mechanisms of these LncRNAs.
期刊介绍:
Non-coding RNA Research aims to publish high quality research and review articles on the mechanistic role of non-coding RNAs in all human diseases. This interdisciplinary journal will welcome research dealing with all aspects of non-coding RNAs-their biogenesis, regulation and role in disease progression. The focus of this journal will be to publish translational studies as well as well-designed basic studies with translational and clinical implications. The non-coding RNAs of particular interest will be microRNAs (miRNAs), small interfering RNAs (siRNAs), small nucleolar RNAs (snoRNAs), U-RNAs/small nuclear RNAs (snRNAs), exosomal/extracellular RNAs (exRNAs), Piwi-interacting RNAs (piRNAs) and long non-coding RNAs. Topics of interest will include, but not limited to: -Regulation of non-coding RNAs -Targets and regulatory functions of non-coding RNAs -Epigenetics and non-coding RNAs -Biological functions of non-coding RNAs -Non-coding RNAs as biomarkers -Non-coding RNA-based therapeutics -Prognostic value of non-coding RNAs -Pharmacological studies involving non-coding RNAs -Population based and epidemiological studies -Gene expression / proteomics / computational / pathway analysis-based studies on non-coding RNAs with functional validation -Novel strategies to manipulate non-coding RNAs expression and function -Clinical studies on evaluation of non-coding RNAs The journal will strive to disseminate cutting edge research, showcasing the ever-evolving importance of non-coding RNAs in modern day research and medicine.