H. Yu , Z.K. Liu , Y. Liu , W. Yu , Y.L. Xu , C. Liu , B.A. Jiang , S.H. Park , K.S. Shin
{"title":"单程口径轧制对 Mg 10Gd 二元合金微观结构演变和力学性能的影响","authors":"H. Yu , Z.K. Liu , Y. Liu , W. Yu , Y.L. Xu , C. Liu , B.A. Jiang , S.H. Park , K.S. Shin","doi":"10.1016/j.jma.2024.04.030","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of varying rolling reduction on the evolution of microstructure and mechanical properties of Mg<img>10Gd (in wt%) alloys by caliber rolling (CR). By increasing the rolling reduction from 45 % to 65 %, a uniform bimodal structure is obtained in which coarse grains (CGs) larger than 10 µm are surrounded by fine grains (FGs). The Mg<img>Gd alloy subjected to 65 % reduction exhibits superior mechanical properties, i.e. yield strength (YS) of ∼424 MPa, ultimate tensile strength (UTS) of ∼500 MPa and elongation (El.) of ∼3.3 %. The synergistic improvement in strength and ductility is primarily attributed to the combined effects of low-angle grain boundary (LAGB) strengthening, precipitation strengthening, and the coordinated deformation exhibited by the bimodal structure. In addition, caliber rolling also provides a novel approach for the design of Mg alloys with uniform bimodal structures that exhibit both high strength and ductility.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"12 12","pages":"Pages 5119-5131"},"PeriodicalIF":15.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of single-pass caliber rolling on the microstructural evolution and mechanical properties of Mg10Gd binary alloy\",\"authors\":\"H. Yu , Z.K. Liu , Y. Liu , W. Yu , Y.L. Xu , C. Liu , B.A. Jiang , S.H. Park , K.S. Shin\",\"doi\":\"10.1016/j.jma.2024.04.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the influence of varying rolling reduction on the evolution of microstructure and mechanical properties of Mg<img>10Gd (in wt%) alloys by caliber rolling (CR). By increasing the rolling reduction from 45 % to 65 %, a uniform bimodal structure is obtained in which coarse grains (CGs) larger than 10 µm are surrounded by fine grains (FGs). The Mg<img>Gd alloy subjected to 65 % reduction exhibits superior mechanical properties, i.e. yield strength (YS) of ∼424 MPa, ultimate tensile strength (UTS) of ∼500 MPa and elongation (El.) of ∼3.3 %. The synergistic improvement in strength and ductility is primarily attributed to the combined effects of low-angle grain boundary (LAGB) strengthening, precipitation strengthening, and the coordinated deformation exhibited by the bimodal structure. In addition, caliber rolling also provides a novel approach for the design of Mg alloys with uniform bimodal structures that exhibit both high strength and ductility.</div></div>\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"12 12\",\"pages\":\"Pages 5119-5131\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213956724001610\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724001610","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Influence of single-pass caliber rolling on the microstructural evolution and mechanical properties of Mg10Gd binary alloy
This study investigates the influence of varying rolling reduction on the evolution of microstructure and mechanical properties of Mg10Gd (in wt%) alloys by caliber rolling (CR). By increasing the rolling reduction from 45 % to 65 %, a uniform bimodal structure is obtained in which coarse grains (CGs) larger than 10 µm are surrounded by fine grains (FGs). The MgGd alloy subjected to 65 % reduction exhibits superior mechanical properties, i.e. yield strength (YS) of ∼424 MPa, ultimate tensile strength (UTS) of ∼500 MPa and elongation (El.) of ∼3.3 %. The synergistic improvement in strength and ductility is primarily attributed to the combined effects of low-angle grain boundary (LAGB) strengthening, precipitation strengthening, and the coordinated deformation exhibited by the bimodal structure. In addition, caliber rolling also provides a novel approach for the design of Mg alloys with uniform bimodal structures that exhibit both high strength and ductility.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.