{"title":"用十字交叉三角形上的非线性双变量 C2 四分样条准内插法逼近片状平滑函数","authors":"Francesc Aràndiga , Sara Remogna","doi":"10.1016/j.apnum.2024.05.018","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we focus on the space of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> quartic splines on uniform criss-cross triangulations and we propose a method based on weighted essentially non-oscillatory techniques and obtained by modifying classical spline quasi-interpolants in order to approximate piecewise smooth functions avoiding Gibbs phenomenon near discontinuities and, at the same time, maintaining the high-order accuracy in smooth regions. We analyse the convergence properties of the proposed quasi-interpolants and we provide some numerical and graphical tests confirming the theoretical results.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001247/pdfft?md5=e7d005a097a5af6e0af8dd8a4781cd17&pid=1-s2.0-S0168927424001247-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Approximation of piecewise smooth functions by nonlinear bivariate C2 quartic spline quasi-interpolants on criss-cross triangulations\",\"authors\":\"Francesc Aràndiga , Sara Remogna\",\"doi\":\"10.1016/j.apnum.2024.05.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we focus on the space of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> quartic splines on uniform criss-cross triangulations and we propose a method based on weighted essentially non-oscillatory techniques and obtained by modifying classical spline quasi-interpolants in order to approximate piecewise smooth functions avoiding Gibbs phenomenon near discontinuities and, at the same time, maintaining the high-order accuracy in smooth regions. We analyse the convergence properties of the proposed quasi-interpolants and we provide some numerical and graphical tests confirming the theoretical results.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001247/pdfft?md5=e7d005a097a5af6e0af8dd8a4781cd17&pid=1-s2.0-S0168927424001247-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Approximation of piecewise smooth functions by nonlinear bivariate C2 quartic spline quasi-interpolants on criss-cross triangulations
In this paper we focus on the space of quartic splines on uniform criss-cross triangulations and we propose a method based on weighted essentially non-oscillatory techniques and obtained by modifying classical spline quasi-interpolants in order to approximate piecewise smooth functions avoiding Gibbs phenomenon near discontinuities and, at the same time, maintaining the high-order accuracy in smooth regions. We analyse the convergence properties of the proposed quasi-interpolants and we provide some numerical and graphical tests confirming the theoretical results.