用基于透明质酸的给药方法弥合类风湿性关节炎治疗中的差距

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sakshi Priya , Jeevika Daryani , Vaibhavi Meghraj Desai, Gautam Singhvi
{"title":"用基于透明质酸的给药方法弥合类风湿性关节炎治疗中的差距","authors":"Sakshi Priya ,&nbsp;Jeevika Daryani ,&nbsp;Vaibhavi Meghraj Desai,&nbsp;Gautam Singhvi","doi":"10.1016/j.ijbiomac.2024.132586","DOIUrl":null,"url":null,"abstract":"<div><p>Rheumatoid Arthritis (RA) is a chronic, inflammatory, auto-immune disease that is majorly associated with the degradation of the synovial linings of the joints. It is a progressive disease that reduces the life span in affected individuals. Nanoparticles involving hyaluronic acid (HA) have gained the limelight for designing target-specific and more effective drug delivery options for RA. HA is found abundantly in the synovial fluid and acts as a natural ligand for the CD44 receptors. The targeted delivery approach using CD44 as the target can help in minimizing off-target drug distribution. These HA-based surface-decorated nanocarriers, hydrogels, and MNs are cutting-edge strategies that promise tailored delivery, fewer side effects, and more patient adherence to address the common issues associated with RA therapy. Considering the above facts, this review attempts to discuss the role of HA in making more effective formulations for therapeutic delivery in treating RA. Additionally, it provides a comprehensive overview of the potential advancements, mainly in treating RA by HA-based topical, transdermal, and parenteral drug delivery systems, with relevant case studies. The existing difficulties and potential paths for future research on HA-based non-conventional formulations for the management of RA are also discussed.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the gap in rheumatoid arthritis treatment with hyaluronic acid-based drug delivery approaches\",\"authors\":\"Sakshi Priya ,&nbsp;Jeevika Daryani ,&nbsp;Vaibhavi Meghraj Desai,&nbsp;Gautam Singhvi\",\"doi\":\"10.1016/j.ijbiomac.2024.132586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rheumatoid Arthritis (RA) is a chronic, inflammatory, auto-immune disease that is majorly associated with the degradation of the synovial linings of the joints. It is a progressive disease that reduces the life span in affected individuals. Nanoparticles involving hyaluronic acid (HA) have gained the limelight for designing target-specific and more effective drug delivery options for RA. HA is found abundantly in the synovial fluid and acts as a natural ligand for the CD44 receptors. The targeted delivery approach using CD44 as the target can help in minimizing off-target drug distribution. These HA-based surface-decorated nanocarriers, hydrogels, and MNs are cutting-edge strategies that promise tailored delivery, fewer side effects, and more patient adherence to address the common issues associated with RA therapy. Considering the above facts, this review attempts to discuss the role of HA in making more effective formulations for therapeutic delivery in treating RA. Additionally, it provides a comprehensive overview of the potential advancements, mainly in treating RA by HA-based topical, transdermal, and parenteral drug delivery systems, with relevant case studies. The existing difficulties and potential paths for future research on HA-based non-conventional formulations for the management of RA are also discussed.</p></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141813024033919\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024033919","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

类风湿性关节炎(RA)是一种慢性、炎症性、自身免疫性疾病,主要与关节滑膜退化有关。它是一种渐进性疾病,会缩短患者的寿命。涉及透明质酸(HA)的纳米颗粒已成为设计治疗 RA 的靶向特异性和更有效给药方案的焦点。透明质酸大量存在于滑液中,是 CD44 受体的天然配体。以 CD44 为靶点的靶向给药方法有助于最大限度地减少药物的脱靶分布。这些基于 HA 表面装饰的纳米载体、水凝胶和 MN 是最前沿的策略,有望实现定制给药、减少副作用和提高患者依从性,从而解决与 RA 治疗相关的常见问题。考虑到上述事实,本综述试图讨论 HA 在制作更有效的治疗配方以治疗 RA 方面的作用。此外,本综述还通过相关案例研究,全面概述了以HA为基础的局部、透皮和肠外给药系统在治疗RA方面的潜在进展。此外,还讨论了基于HA的非常规制剂在治疗RA方面的现有困难和未来研究的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bridging the gap in rheumatoid arthritis treatment with hyaluronic acid-based drug delivery approaches

Bridging the gap in rheumatoid arthritis treatment with hyaluronic acid-based drug delivery approaches

Rheumatoid Arthritis (RA) is a chronic, inflammatory, auto-immune disease that is majorly associated with the degradation of the synovial linings of the joints. It is a progressive disease that reduces the life span in affected individuals. Nanoparticles involving hyaluronic acid (HA) have gained the limelight for designing target-specific and more effective drug delivery options for RA. HA is found abundantly in the synovial fluid and acts as a natural ligand for the CD44 receptors. The targeted delivery approach using CD44 as the target can help in minimizing off-target drug distribution. These HA-based surface-decorated nanocarriers, hydrogels, and MNs are cutting-edge strategies that promise tailored delivery, fewer side effects, and more patient adherence to address the common issues associated with RA therapy. Considering the above facts, this review attempts to discuss the role of HA in making more effective formulations for therapeutic delivery in treating RA. Additionally, it provides a comprehensive overview of the potential advancements, mainly in treating RA by HA-based topical, transdermal, and parenteral drug delivery systems, with relevant case studies. The existing difficulties and potential paths for future research on HA-based non-conventional formulations for the management of RA are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信