植物生长促进酵母(PGPY)对西葫芦植株早期生长的有益影响

IF 5.4 Q1 PLANT SCIENCES
Chiara Ruspi , Debora Casagrande Pierantoni , Angela Conti , Lorenzo Favaro , Maria Elena Antinori , Edoardo Puglisi , Laura Corte , Gianluigi Cardinali
{"title":"植物生长促进酵母(PGPY)对西葫芦植株早期生长的有益影响","authors":"Chiara Ruspi ,&nbsp;Debora Casagrande Pierantoni ,&nbsp;Angela Conti ,&nbsp;Lorenzo Favaro ,&nbsp;Maria Elena Antinori ,&nbsp;Edoardo Puglisi ,&nbsp;Laura Corte ,&nbsp;Gianluigi Cardinali","doi":"10.1016/j.cpb.2024.100357","DOIUrl":null,"url":null,"abstract":"<div><p>The use of microbes capable of beneficially interacting with plants is essential for advancing climate-smart agriculture. This approach aims to reduce chemical use while simultaneously enhancing crop productivity. This implies efforts to optimize the criteria for selecting potential plant growth promoters (PGPs), focusing also on yeasts, only recently investigated for their PGP potential. The present study employed a set of Ascomycetes and Basidiomycetes yeasts to test their PGP properties on zucchini (<em>Cucurbita pepo</em> L.), chosen as a fast-growing plant with a vast economical interest. Yeasts were tested alone and as consortium. Seed inoculation with yeasts boosted the early phase of growth of the zucchini plants, primarily affecting the root development. Three strains belonging to the species <em>Schwanniomyces etchellsii, Zygotorulaspora florentina</em> and <em>Holtermanniella festucosa</em> induced a strong and significant enhancement of weight and length of both epi- and hypogeal parts of the plant. Furthermore, the presence of yeasts induced strain-specific modulations in the biochemical profiles of soil, primarily detected in the rhizosphere. This suggests an active interaction between the roots and the inoculated yeast cultures.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":"39 ","pages":"Article 100357"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000392/pdfft?md5=3871d983ce2551ae06f7bc785681f0f1&pid=1-s2.0-S2214662824000392-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Beneficial effects of plant growth-promoting yeasts (PGPYs) on the early stage of growth of zucchini plants\",\"authors\":\"Chiara Ruspi ,&nbsp;Debora Casagrande Pierantoni ,&nbsp;Angela Conti ,&nbsp;Lorenzo Favaro ,&nbsp;Maria Elena Antinori ,&nbsp;Edoardo Puglisi ,&nbsp;Laura Corte ,&nbsp;Gianluigi Cardinali\",\"doi\":\"10.1016/j.cpb.2024.100357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of microbes capable of beneficially interacting with plants is essential for advancing climate-smart agriculture. This approach aims to reduce chemical use while simultaneously enhancing crop productivity. This implies efforts to optimize the criteria for selecting potential plant growth promoters (PGPs), focusing also on yeasts, only recently investigated for their PGP potential. The present study employed a set of Ascomycetes and Basidiomycetes yeasts to test their PGP properties on zucchini (<em>Cucurbita pepo</em> L.), chosen as a fast-growing plant with a vast economical interest. Yeasts were tested alone and as consortium. Seed inoculation with yeasts boosted the early phase of growth of the zucchini plants, primarily affecting the root development. Three strains belonging to the species <em>Schwanniomyces etchellsii, Zygotorulaspora florentina</em> and <em>Holtermanniella festucosa</em> induced a strong and significant enhancement of weight and length of both epi- and hypogeal parts of the plant. Furthermore, the presence of yeasts induced strain-specific modulations in the biochemical profiles of soil, primarily detected in the rhizosphere. This suggests an active interaction between the roots and the inoculated yeast cultures.</p></div>\",\"PeriodicalId\":38090,\"journal\":{\"name\":\"Current Plant Biology\",\"volume\":\"39 \",\"pages\":\"Article 100357\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000392/pdfft?md5=3871d983ce2551ae06f7bc785681f0f1&pid=1-s2.0-S2214662824000392-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

使用能够与植物产生有益互动的微生物对于推进气候智能型农业至关重要。这种方法旨在减少化学品的使用,同时提高作物产量。这意味着需要努力优化潜在植物生长促进剂(PGPs)的筛选标准,同时还要关注酵母菌,因为最近才对它们的 PGP 潜力进行了调查。本研究采用了一系列子囊菌和担子菌酵母,测试它们在西葫芦(Cucurbita pepo L.)上的植物生长促进剂特性。对酵母菌进行了单独和联合测试。种子接种酵母菌可促进西葫芦植株的早期生长,主要影响根系发育。三种菌株分别属于 Schwanniomyces etchellsii、Zygotorulaspora florentina 和 Holtermanniella festucosa,它们能显著提高植株上部和下部的重量和长度。此外,酵母菌的存在还诱导了土壤生化特征中菌株特异性的变化,主要是在根圈中检测到。这表明根系与接种的酵母培养物之间存在着积极的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beneficial effects of plant growth-promoting yeasts (PGPYs) on the early stage of growth of zucchini plants

The use of microbes capable of beneficially interacting with plants is essential for advancing climate-smart agriculture. This approach aims to reduce chemical use while simultaneously enhancing crop productivity. This implies efforts to optimize the criteria for selecting potential plant growth promoters (PGPs), focusing also on yeasts, only recently investigated for their PGP potential. The present study employed a set of Ascomycetes and Basidiomycetes yeasts to test their PGP properties on zucchini (Cucurbita pepo L.), chosen as a fast-growing plant with a vast economical interest. Yeasts were tested alone and as consortium. Seed inoculation with yeasts boosted the early phase of growth of the zucchini plants, primarily affecting the root development. Three strains belonging to the species Schwanniomyces etchellsii, Zygotorulaspora florentina and Holtermanniella festucosa induced a strong and significant enhancement of weight and length of both epi- and hypogeal parts of the plant. Furthermore, the presence of yeasts induced strain-specific modulations in the biochemical profiles of soil, primarily detected in the rhizosphere. This suggests an active interaction between the roots and the inoculated yeast cultures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信