{"title":"气固上升器和下降器反应器中高速射流的混合效应","authors":"Zihan Yan, Dongdong Wang, Lining Wu, Chunxi Lu","doi":"10.1016/j.partic.2024.05.010","DOIUrl":null,"url":null,"abstract":"<div><p>For the high-temperature and short-contact time gas-solid reaction process, riser and downer are considered appropriate reactors. To realize an intensive and complete mixing of reactants with catalysts, the feed raw is always introduced in the form of high-speed jets. In this study, in order to investigate the mixing effects of different types of high-speed jets in riser and downer, traceable ozone is injected with the high-speed feed jets to react with catalyst particles. By detecting the decomposition of ozone, the gas-solid mixing and reaction in riser and downer under the influence of both co-current and counter-current injections are analyzed. The relative ozone concentration is used to reflect the location reaction extent and its radial nonuniformity index is proposed to compare the results in riser and downer. It is found that the jet influence zone in downer provides a relatively better environment for the mixing of feed jets with catalysts. In the riser, introduction of counter-current injections could improve the uniformity of gas-solid mixing in the initial contact region of feed with catalysts.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"92 ","pages":"Pages 196-209"},"PeriodicalIF":4.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixing effects of high-speed jets in gas-solid riser and downer reactors\",\"authors\":\"Zihan Yan, Dongdong Wang, Lining Wu, Chunxi Lu\",\"doi\":\"10.1016/j.partic.2024.05.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the high-temperature and short-contact time gas-solid reaction process, riser and downer are considered appropriate reactors. To realize an intensive and complete mixing of reactants with catalysts, the feed raw is always introduced in the form of high-speed jets. In this study, in order to investigate the mixing effects of different types of high-speed jets in riser and downer, traceable ozone is injected with the high-speed feed jets to react with catalyst particles. By detecting the decomposition of ozone, the gas-solid mixing and reaction in riser and downer under the influence of both co-current and counter-current injections are analyzed. The relative ozone concentration is used to reflect the location reaction extent and its radial nonuniformity index is proposed to compare the results in riser and downer. It is found that the jet influence zone in downer provides a relatively better environment for the mixing of feed jets with catalysts. In the riser, introduction of counter-current injections could improve the uniformity of gas-solid mixing in the initial contact region of feed with catalysts.</p></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"92 \",\"pages\":\"Pages 196-209\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124000865\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124000865","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Mixing effects of high-speed jets in gas-solid riser and downer reactors
For the high-temperature and short-contact time gas-solid reaction process, riser and downer are considered appropriate reactors. To realize an intensive and complete mixing of reactants with catalysts, the feed raw is always introduced in the form of high-speed jets. In this study, in order to investigate the mixing effects of different types of high-speed jets in riser and downer, traceable ozone is injected with the high-speed feed jets to react with catalyst particles. By detecting the decomposition of ozone, the gas-solid mixing and reaction in riser and downer under the influence of both co-current and counter-current injections are analyzed. The relative ozone concentration is used to reflect the location reaction extent and its radial nonuniformity index is proposed to compare the results in riser and downer. It is found that the jet influence zone in downer provides a relatively better environment for the mixing of feed jets with catalysts. In the riser, introduction of counter-current injections could improve the uniformity of gas-solid mixing in the initial contact region of feed with catalysts.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.