基于 RRAM 的内存处理技术,实现高效的边缘智能视觉任务

Ashwani Kumar , Sai Sukruth Bezugam
{"title":"基于 RRAM 的内存处理技术,实现高效的边缘智能视觉任务","authors":"Ashwani Kumar ,&nbsp;Sai Sukruth Bezugam","doi":"10.1016/j.memori.2024.100115","DOIUrl":null,"url":null,"abstract":"<div><p>The work presents a proof-of-concept methodology for at edge visual data storage and processing-in-memory (PIM) as visual data preprocessing inspired from the biological visual system pipeline. This work proposes a methodology to improve the contrast of low-light low-contrast image by carefully modulating the conductance of memristive kind oxide-based resistive memory (RRAM)device. We present the level of contrast enhancement using conductance modulation of different non-filamentary RRAMs with different material stacks and also analyze the impact of RRAM variability on the contrast enhancement. For intelligent vision tasks, we implement artificial neural network (ANN) to perform the image classification and shows the best-case improvement of <span><math><mo>∼</mo></math></span> 1500 epochs (<span><math><mo>∼</mo></math></span> 74%) using RRAM based PIM. We also implement a large sized ANN “Efficient-Det Network” to perform object recognition on low-light low-contrast dataset ”Ex-Dark” to evaluate the proposed method using PIM layer. The result shows 8% higher mAP than network without a PIM layer. The present work is a step towards the development of efficient hybrid visual system for intelligent vision tasks at edge.</p></div>","PeriodicalId":100915,"journal":{"name":"Memories - Materials, Devices, Circuits and Systems","volume":"8 ","pages":"Article 100115"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773064624000185/pdfft?md5=add14767a7cfd0e098a0b9be5114842a&pid=1-s2.0-S2773064624000185-main.pdf","citationCount":"0","resultStr":"{\"title\":\"RRAM based processing-in-memory for efficient intelligent vision tasks at the edge\",\"authors\":\"Ashwani Kumar ,&nbsp;Sai Sukruth Bezugam\",\"doi\":\"10.1016/j.memori.2024.100115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The work presents a proof-of-concept methodology for at edge visual data storage and processing-in-memory (PIM) as visual data preprocessing inspired from the biological visual system pipeline. This work proposes a methodology to improve the contrast of low-light low-contrast image by carefully modulating the conductance of memristive kind oxide-based resistive memory (RRAM)device. We present the level of contrast enhancement using conductance modulation of different non-filamentary RRAMs with different material stacks and also analyze the impact of RRAM variability on the contrast enhancement. For intelligent vision tasks, we implement artificial neural network (ANN) to perform the image classification and shows the best-case improvement of <span><math><mo>∼</mo></math></span> 1500 epochs (<span><math><mo>∼</mo></math></span> 74%) using RRAM based PIM. We also implement a large sized ANN “Efficient-Det Network” to perform object recognition on low-light low-contrast dataset ”Ex-Dark” to evaluate the proposed method using PIM layer. The result shows 8% higher mAP than network without a PIM layer. The present work is a step towards the development of efficient hybrid visual system for intelligent vision tasks at edge.</p></div>\",\"PeriodicalId\":100915,\"journal\":{\"name\":\"Memories - Materials, Devices, Circuits and Systems\",\"volume\":\"8 \",\"pages\":\"Article 100115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773064624000185/pdfft?md5=add14767a7cfd0e098a0b9be5114842a&pid=1-s2.0-S2773064624000185-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memories - Materials, Devices, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773064624000185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memories - Materials, Devices, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773064624000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究提出了一种概念验证方法,用于边缘视觉数据存储和内存处理(PIM),作为视觉数据预处理,其灵感来自生物视觉系统管道。这项研究提出了一种方法,通过仔细调节基于氧化物的电阻式存储器(RRAM)器件的电导率来提高低光低对比度图像的对比度。我们介绍了利用不同材料堆叠的非丝状 RRAM 的电导调制提高对比度的水平,并分析了 RRAM 的变化对对比度提高的影响。对于智能视觉任务,我们采用人工神经网络(ANN)来执行图像分类,结果表明,使用基于 RRAM 的 PIM,最佳情况下可提高 ∼ 1500 个历时(∼ 74%)。我们还在低照度、低对比度数据集 "Ex-Dark "上实施了一个大型 ANN "Efficient-Det Network "来执行物体识别,以评估使用 PIM 层的建议方法。结果显示,mAP 比没有 PIM 层的网络高出 8%。本研究为开发用于边缘智能视觉任务的高效混合视觉系统迈出了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RRAM based processing-in-memory for efficient intelligent vision tasks at the edge

The work presents a proof-of-concept methodology for at edge visual data storage and processing-in-memory (PIM) as visual data preprocessing inspired from the biological visual system pipeline. This work proposes a methodology to improve the contrast of low-light low-contrast image by carefully modulating the conductance of memristive kind oxide-based resistive memory (RRAM)device. We present the level of contrast enhancement using conductance modulation of different non-filamentary RRAMs with different material stacks and also analyze the impact of RRAM variability on the contrast enhancement. For intelligent vision tasks, we implement artificial neural network (ANN) to perform the image classification and shows the best-case improvement of 1500 epochs ( 74%) using RRAM based PIM. We also implement a large sized ANN “Efficient-Det Network” to perform object recognition on low-light low-contrast dataset ”Ex-Dark” to evaluate the proposed method using PIM layer. The result shows 8% higher mAP than network without a PIM layer. The present work is a step towards the development of efficient hybrid visual system for intelligent vision tasks at edge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信