多项式和劳伦多项式环的幂封闭理想

IF 0.7 2区 数学 Q2 MATHEMATICS
Geir Agnarsson, Jim Lawrence
{"title":"多项式和劳伦多项式环的幂封闭理想","authors":"Geir Agnarsson,&nbsp;Jim Lawrence","doi":"10.1016/j.jpaa.2024.107733","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the structure of power-closed ideals of the complex polynomial ring <span><math><mi>R</mi><mo>=</mo><mrow><mi>C</mi></mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span> and the Laurent polynomial ring <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup><mo>=</mo><mrow><mi>C</mi></mrow><msup><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></mrow><mrow><mo>±</mo></mrow></msup><mo>=</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mi>C</mi></mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span>, where <em>S</em> is the multiplicatively closed semigroup <span><math><mi>S</mi><mo>=</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span>. Here, an ideal <em>I</em> is <em>power-closed</em> if <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>I</mi></math></span> implies <span><math><mi>f</mi><mo>(</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>i</mi></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msubsup><mo>)</mo><mo>∈</mo><mi>I</mi></math></span> for each natural number <em>i</em>. Important examples of such ideals are provided by the ideals of relations in Minkowski rings of convex polytopes. We investigate related closure and interior operators on the set of ideals of <em>R</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span> and we give a complete description of principal power-closed ideals and of radicals of general power-closed ideals of <em>R</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span>.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"228 12","pages":"Article 107733"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power-closed ideals of polynomial and Laurent polynomial rings\",\"authors\":\"Geir Agnarsson,&nbsp;Jim Lawrence\",\"doi\":\"10.1016/j.jpaa.2024.107733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the structure of power-closed ideals of the complex polynomial ring <span><math><mi>R</mi><mo>=</mo><mrow><mi>C</mi></mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span> and the Laurent polynomial ring <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup><mo>=</mo><mrow><mi>C</mi></mrow><msup><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></mrow><mrow><mo>±</mo></mrow></msup><mo>=</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mi>C</mi></mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span>, where <em>S</em> is the multiplicatively closed semigroup <span><math><mi>S</mi><mo>=</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span>. Here, an ideal <em>I</em> is <em>power-closed</em> if <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>I</mi></math></span> implies <span><math><mi>f</mi><mo>(</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>i</mi></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msubsup><mo>)</mo><mo>∈</mo><mi>I</mi></math></span> for each natural number <em>i</em>. Important examples of such ideals are provided by the ideals of relations in Minkowski rings of convex polytopes. We investigate related closure and interior operators on the set of ideals of <em>R</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span> and we give a complete description of principal power-closed ideals and of radicals of general power-closed ideals of <em>R</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"228 12\",\"pages\":\"Article 107733\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001300\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001300","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究复多项式环 R=C[x1,...,xd] 和劳伦多项式环 R±=C[x1,...,xd]±=S-1C[x1,...,xd] 的幂闭理想的结构,其中 S 是乘法封闭半群 S=[x1,...,xd]。对于每个自然数 i,如果 f(x1,...,xd)∈I 意味着 f(x1i,...,xdi)∈I,则理想 I 是幂封闭的。我们研究了 R 和 R± 的理想集上的相关闭包和内部算子,并给出了 R 和 R± 的主幂闭包理想和一般幂闭包理想的根的完整描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power-closed ideals of polynomial and Laurent polynomial rings

We investigate the structure of power-closed ideals of the complex polynomial ring R=C[x1,,xd] and the Laurent polynomial ring R±=C[x1,,xd]±=S1C[x1,,xd], where S is the multiplicatively closed semigroup S=[x1,,xd]. Here, an ideal I is power-closed if f(x1,,xd)I implies f(x1i,,xdi)I for each natural number i. Important examples of such ideals are provided by the ideals of relations in Minkowski rings of convex polytopes. We investigate related closure and interior operators on the set of ideals of R and R± and we give a complete description of principal power-closed ideals and of radicals of general power-closed ideals of R and R±.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信