{"title":"多项式和劳伦多项式环的幂封闭理想","authors":"Geir Agnarsson, Jim Lawrence","doi":"10.1016/j.jpaa.2024.107733","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the structure of power-closed ideals of the complex polynomial ring <span><math><mi>R</mi><mo>=</mo><mrow><mi>C</mi></mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span> and the Laurent polynomial ring <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup><mo>=</mo><mrow><mi>C</mi></mrow><msup><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></mrow><mrow><mo>±</mo></mrow></msup><mo>=</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mi>C</mi></mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span>, where <em>S</em> is the multiplicatively closed semigroup <span><math><mi>S</mi><mo>=</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span>. Here, an ideal <em>I</em> is <em>power-closed</em> if <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>I</mi></math></span> implies <span><math><mi>f</mi><mo>(</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>i</mi></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msubsup><mo>)</mo><mo>∈</mo><mi>I</mi></math></span> for each natural number <em>i</em>. Important examples of such ideals are provided by the ideals of relations in Minkowski rings of convex polytopes. We investigate related closure and interior operators on the set of ideals of <em>R</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span> and we give a complete description of principal power-closed ideals and of radicals of general power-closed ideals of <em>R</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span>.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"228 12","pages":"Article 107733"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power-closed ideals of polynomial and Laurent polynomial rings\",\"authors\":\"Geir Agnarsson, Jim Lawrence\",\"doi\":\"10.1016/j.jpaa.2024.107733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the structure of power-closed ideals of the complex polynomial ring <span><math><mi>R</mi><mo>=</mo><mrow><mi>C</mi></mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span> and the Laurent polynomial ring <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup><mo>=</mo><mrow><mi>C</mi></mrow><msup><mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></mrow><mrow><mo>±</mo></mrow></msup><mo>=</mo><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mrow><mi>C</mi></mrow><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span>, where <em>S</em> is the multiplicatively closed semigroup <span><math><mi>S</mi><mo>=</mo><mo>[</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>]</mo></math></span>. Here, an ideal <em>I</em> is <em>power-closed</em> if <span><math><mi>f</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo><mo>∈</mo><mi>I</mi></math></span> implies <span><math><mi>f</mi><mo>(</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>i</mi></mrow></msubsup><mo>,</mo><mo>…</mo><mo>,</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msubsup><mo>)</mo><mo>∈</mo><mi>I</mi></math></span> for each natural number <em>i</em>. Important examples of such ideals are provided by the ideals of relations in Minkowski rings of convex polytopes. We investigate related closure and interior operators on the set of ideals of <em>R</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span> and we give a complete description of principal power-closed ideals and of radicals of general power-closed ideals of <em>R</em> and <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>±</mo></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"228 12\",\"pages\":\"Article 107733\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001300\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001300","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究复多项式环 R=C[x1,...,xd] 和劳伦多项式环 R±=C[x1,...,xd]±=S-1C[x1,...,xd] 的幂闭理想的结构,其中 S 是乘法封闭半群 S=[x1,...,xd]。对于每个自然数 i,如果 f(x1,...,xd)∈I 意味着 f(x1i,...,xdi)∈I,则理想 I 是幂封闭的。我们研究了 R 和 R± 的理想集上的相关闭包和内部算子,并给出了 R 和 R± 的主幂闭包理想和一般幂闭包理想的根的完整描述。
Power-closed ideals of polynomial and Laurent polynomial rings
We investigate the structure of power-closed ideals of the complex polynomial ring and the Laurent polynomial ring , where S is the multiplicatively closed semigroup . Here, an ideal I is power-closed if implies for each natural number i. Important examples of such ideals are provided by the ideals of relations in Minkowski rings of convex polytopes. We investigate related closure and interior operators on the set of ideals of R and and we give a complete description of principal power-closed ideals and of radicals of general power-closed ideals of R and .
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.