{"title":"受移动和非移动吸附剂影响的胶体促进污染物迁移三维模型","authors":"Akhilesh Paswan, Pramod Kumar Sharma","doi":"10.1016/j.jconhyd.2024.104369","DOIUrl":null,"url":null,"abstract":"<div><p>A conceptual equilibrium-based mathematical model for colloid-associated contaminant transport has been developed to study the impact of the subsurface environment on contaminant transport through a three-dimensional, saturated, and homogeneous groundwater flow system with uniform flow. The kinetic model's critical limitation is dealing with the more significant number of parameters utilized upon application to larger scales in three-dimensional regions when a series of transport mechanisms are incorporated. Therefore, the present study is the first attempt to study the equilibrium approach in three-dimensional regions to avoid complexities in the model. The current study, however, shows that the mere existence of colloids does not indicate that contaminants will move more quickly; rather, it also depends on how the aqueous phase interacts with the static solid matrix, captured colloid particles, and mobile colloids as well as how colloids interact with stationary solid matrix phase. We noticed that the affinity of contaminants to immobile sorbents (stationary solid matrix and captured colloids) can reduce the transport even in the presence of colloids. Three-dimensional numerical experiments reveal that contaminants infiltrate more in the downward direction in the absence of colloids and can be distributed more in the longitudinal direction and less in the downward direction when colloids are present. The dual nature of colloids is espied here: first, colloids can remove pollutants from a specific area more quickly, and second, in a similar manner, colloids can pollute a specific region more quickly.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"264 ","pages":"Article 104369"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional modeling for colloid-facilitated contaminant transport with the effect of mobile and immobile sorbents\",\"authors\":\"Akhilesh Paswan, Pramod Kumar Sharma\",\"doi\":\"10.1016/j.jconhyd.2024.104369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A conceptual equilibrium-based mathematical model for colloid-associated contaminant transport has been developed to study the impact of the subsurface environment on contaminant transport through a three-dimensional, saturated, and homogeneous groundwater flow system with uniform flow. The kinetic model's critical limitation is dealing with the more significant number of parameters utilized upon application to larger scales in three-dimensional regions when a series of transport mechanisms are incorporated. Therefore, the present study is the first attempt to study the equilibrium approach in three-dimensional regions to avoid complexities in the model. The current study, however, shows that the mere existence of colloids does not indicate that contaminants will move more quickly; rather, it also depends on how the aqueous phase interacts with the static solid matrix, captured colloid particles, and mobile colloids as well as how colloids interact with stationary solid matrix phase. We noticed that the affinity of contaminants to immobile sorbents (stationary solid matrix and captured colloids) can reduce the transport even in the presence of colloids. Three-dimensional numerical experiments reveal that contaminants infiltrate more in the downward direction in the absence of colloids and can be distributed more in the longitudinal direction and less in the downward direction when colloids are present. The dual nature of colloids is espied here: first, colloids can remove pollutants from a specific area more quickly, and second, in a similar manner, colloids can pollute a specific region more quickly.</p></div>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"264 \",\"pages\":\"Article 104369\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000731\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000731","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Three-dimensional modeling for colloid-facilitated contaminant transport with the effect of mobile and immobile sorbents
A conceptual equilibrium-based mathematical model for colloid-associated contaminant transport has been developed to study the impact of the subsurface environment on contaminant transport through a three-dimensional, saturated, and homogeneous groundwater flow system with uniform flow. The kinetic model's critical limitation is dealing with the more significant number of parameters utilized upon application to larger scales in three-dimensional regions when a series of transport mechanisms are incorporated. Therefore, the present study is the first attempt to study the equilibrium approach in three-dimensional regions to avoid complexities in the model. The current study, however, shows that the mere existence of colloids does not indicate that contaminants will move more quickly; rather, it also depends on how the aqueous phase interacts with the static solid matrix, captured colloid particles, and mobile colloids as well as how colloids interact with stationary solid matrix phase. We noticed that the affinity of contaminants to immobile sorbents (stationary solid matrix and captured colloids) can reduce the transport even in the presence of colloids. Three-dimensional numerical experiments reveal that contaminants infiltrate more in the downward direction in the absence of colloids and can be distributed more in the longitudinal direction and less in the downward direction when colloids are present. The dual nature of colloids is espied here: first, colloids can remove pollutants from a specific area more quickly, and second, in a similar manner, colloids can pollute a specific region more quickly.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.