{"title":"七国集团股市波动对预测油价波动的非对称效应:量化自回归模型的证据","authors":"Feipeng Zhang , Hongfu Gao , Di Yuan","doi":"10.1016/j.jcomm.2024.100409","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the asymmetric effect of G7 stock market volatility on predicting oil price volatility under different oil market conditions by using the quantile autoregression model. Both in- and out-of-sample results demonstrate the prediction superiority and effectiveness of the quantile autoregression model. The US and Canada's stock markets exhibit the strongest predictive ability across the entire distribution, while the UK demonstrates strong predictive power specifically during periods of high oil price volatility. Japan, Germany, France, and Italy as oil importers can predict low and median oil volatility. The strong predictability of G7 stock volatility may be attributable to their significant impact on the business cycle and investor sentiment. This asymmetric prediction ability arises not only from the average volatility shocks at various quantiles but also from the bad and good stock volatility at different quantiles. Further research suggests that bad stock volatility appears to be more predictable than good stock volatility, especially in high oil price fluctuations. Furthermore, the superiority and effectiveness of the quantile autoregression model in predicting oil volatility are proven to be applicable to emerging markets. This study may provide useful insights for policymakers, businesses, and investors to improve crude oil risk prediction and risk management under different market conditions.</p></div>","PeriodicalId":45111,"journal":{"name":"Journal of Commodity Markets","volume":"35 ","pages":"Article 100409"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The asymmetric effect of G7 stock market volatility on predicting oil price volatility: Evidence from quantile autoregression model\",\"authors\":\"Feipeng Zhang , Hongfu Gao , Di Yuan\",\"doi\":\"10.1016/j.jcomm.2024.100409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the asymmetric effect of G7 stock market volatility on predicting oil price volatility under different oil market conditions by using the quantile autoregression model. Both in- and out-of-sample results demonstrate the prediction superiority and effectiveness of the quantile autoregression model. The US and Canada's stock markets exhibit the strongest predictive ability across the entire distribution, while the UK demonstrates strong predictive power specifically during periods of high oil price volatility. Japan, Germany, France, and Italy as oil importers can predict low and median oil volatility. The strong predictability of G7 stock volatility may be attributable to their significant impact on the business cycle and investor sentiment. This asymmetric prediction ability arises not only from the average volatility shocks at various quantiles but also from the bad and good stock volatility at different quantiles. Further research suggests that bad stock volatility appears to be more predictable than good stock volatility, especially in high oil price fluctuations. Furthermore, the superiority and effectiveness of the quantile autoregression model in predicting oil volatility are proven to be applicable to emerging markets. This study may provide useful insights for policymakers, businesses, and investors to improve crude oil risk prediction and risk management under different market conditions.</p></div>\",\"PeriodicalId\":45111,\"journal\":{\"name\":\"Journal of Commodity Markets\",\"volume\":\"35 \",\"pages\":\"Article 100409\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Commodity Markets\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S240585132400028X\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Commodity Markets","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240585132400028X","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
The asymmetric effect of G7 stock market volatility on predicting oil price volatility: Evidence from quantile autoregression model
This paper investigates the asymmetric effect of G7 stock market volatility on predicting oil price volatility under different oil market conditions by using the quantile autoregression model. Both in- and out-of-sample results demonstrate the prediction superiority and effectiveness of the quantile autoregression model. The US and Canada's stock markets exhibit the strongest predictive ability across the entire distribution, while the UK demonstrates strong predictive power specifically during periods of high oil price volatility. Japan, Germany, France, and Italy as oil importers can predict low and median oil volatility. The strong predictability of G7 stock volatility may be attributable to their significant impact on the business cycle and investor sentiment. This asymmetric prediction ability arises not only from the average volatility shocks at various quantiles but also from the bad and good stock volatility at different quantiles. Further research suggests that bad stock volatility appears to be more predictable than good stock volatility, especially in high oil price fluctuations. Furthermore, the superiority and effectiveness of the quantile autoregression model in predicting oil volatility are proven to be applicable to emerging markets. This study may provide useful insights for policymakers, businesses, and investors to improve crude oil risk prediction and risk management under different market conditions.
期刊介绍:
The purpose of the journal is also to stimulate international dialog among academics, industry participants, traders, investors, and policymakers with mutual interests in commodity markets. The mandate for the journal is to present ongoing work within commodity economics and finance. Topics can be related to financialization of commodity markets; pricing, hedging, and risk analysis of commodity derivatives; risk premia in commodity markets; real option analysis for commodity project investment and production; portfolio allocation including commodities; forecasting in commodity markets; corporate finance for commodity-exposed corporations; econometric/statistical analysis of commodity markets; organization of commodity markets; regulation of commodity markets; local and global commodity trading; and commodity supply chains. Commodity markets in this context are energy markets (including renewables), metal markets, mineral markets, agricultural markets, livestock and fish markets, markets for weather derivatives, emission markets, shipping markets, water, and related markets. This interdisciplinary and trans-disciplinary journal will cover all commodity markets and is thus relevant for a broad audience. Commodity markets are not only of academic interest but also highly relevant for many practitioners, including asset managers, industrial managers, investment bankers, risk managers, and also policymakers in governments, central banks, and supranational institutions.