{"title":"基于由降阶和全阶扩展状态观测器组成的级联估计器的主动干扰抑制控制","authors":"","doi":"10.1016/j.isatra.2024.05.032","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a pioneering cascade estimator, CRESO, which merges reduced-order and full-order extended state observers (ESO) in a novel manner. CRESO is designed to navigate the trade-off between robustness, estimation accuracy, and noise amplification inherent in active disturbance rejection control (ADRC) schemes. An analysis in the frequency domain substantiates CRESO’s performance and robustness capabilities compared to those of single-level ESO and cascade ESO (CESO). These features are quantified using practical metrics, such as stability margins, sensitivity bandwidth, and estimation error at low frequencies. Additionally, the discussion encompasses the impact of selecting bandwidths for the cascade levels of CRESO on noise suppression. Experimental validation on a synchronous buck converter demonstrates the effectiveness of CRESO-based ADRC against control gain uncertainties, frequency-varying external disturbances, and sensor noise. The results highlight the advantages of the proposed approach over ADRC strategies employing singular ESO, two-level CESO, and two independent ESOs, as evidenced by several quality indices derived from the tracking errors and control signals.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"151 ","pages":"Pages 296-311"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active disturbance rejection control based on a cascade estimator composed of reduced-order and full-order extended state observers\",\"authors\":\"\",\"doi\":\"10.1016/j.isatra.2024.05.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a pioneering cascade estimator, CRESO, which merges reduced-order and full-order extended state observers (ESO) in a novel manner. CRESO is designed to navigate the trade-off between robustness, estimation accuracy, and noise amplification inherent in active disturbance rejection control (ADRC) schemes. An analysis in the frequency domain substantiates CRESO’s performance and robustness capabilities compared to those of single-level ESO and cascade ESO (CESO). These features are quantified using practical metrics, such as stability margins, sensitivity bandwidth, and estimation error at low frequencies. Additionally, the discussion encompasses the impact of selecting bandwidths for the cascade levels of CRESO on noise suppression. Experimental validation on a synchronous buck converter demonstrates the effectiveness of CRESO-based ADRC against control gain uncertainties, frequency-varying external disturbances, and sensor noise. The results highlight the advantages of the proposed approach over ADRC strategies employing singular ESO, two-level CESO, and two independent ESOs, as evidenced by several quality indices derived from the tracking errors and control signals.</p></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"151 \",\"pages\":\"Pages 296-311\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824002350\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824002350","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Active disturbance rejection control based on a cascade estimator composed of reduced-order and full-order extended state observers
This paper presents a pioneering cascade estimator, CRESO, which merges reduced-order and full-order extended state observers (ESO) in a novel manner. CRESO is designed to navigate the trade-off between robustness, estimation accuracy, and noise amplification inherent in active disturbance rejection control (ADRC) schemes. An analysis in the frequency domain substantiates CRESO’s performance and robustness capabilities compared to those of single-level ESO and cascade ESO (CESO). These features are quantified using practical metrics, such as stability margins, sensitivity bandwidth, and estimation error at low frequencies. Additionally, the discussion encompasses the impact of selecting bandwidths for the cascade levels of CRESO on noise suppression. Experimental validation on a synchronous buck converter demonstrates the effectiveness of CRESO-based ADRC against control gain uncertainties, frequency-varying external disturbances, and sensor noise. The results highlight the advantages of the proposed approach over ADRC strategies employing singular ESO, two-level CESO, and two independent ESOs, as evidenced by several quality indices derived from the tracking errors and control signals.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.