特殊类型格拉斯曼上的同质 ACM 束

Pub Date : 2024-05-22 DOI:10.1016/j.jpaa.2024.107729
Xinyi Fang , Yusuke Nakayama , Peng Ren
{"title":"特殊类型格拉斯曼上的同质 ACM 束","authors":"Xinyi Fang ,&nbsp;Yusuke Nakayama ,&nbsp;Peng Ren","doi":"10.1016/j.jpaa.2024.107729","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we characterize homogeneous arithmetically Cohen-Macaulay (ACM) bundles over homogeneous varieties of Picard rank one in terms of their associated data. This is a generalization of the result on homogeneous varieties of Picard rank one of classical types presented by Costa and Miró-Roig for type <em>A</em>, and Du, Fang, and Ren for types <span><math><mi>B</mi><mo>,</mo><mi>C</mi></math></span> and <em>D</em>. We show that there are only finitely many irreducible homogeneous ACM bundles by twisting line bundles over Grassmannians of exceptional types. As a consequence, we prove that some Grassmannians of exceptional types are of wild representation type.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous ACM bundles on Grassmannians of exceptional types\",\"authors\":\"Xinyi Fang ,&nbsp;Yusuke Nakayama ,&nbsp;Peng Ren\",\"doi\":\"10.1016/j.jpaa.2024.107729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we characterize homogeneous arithmetically Cohen-Macaulay (ACM) bundles over homogeneous varieties of Picard rank one in terms of their associated data. This is a generalization of the result on homogeneous varieties of Picard rank one of classical types presented by Costa and Miró-Roig for type <em>A</em>, and Du, Fang, and Ren for types <span><math><mi>B</mi><mo>,</mo><mi>C</mi></math></span> and <em>D</em>. We show that there are only finitely many irreducible homogeneous ACM bundles by twisting line bundles over Grassmannians of exceptional types. As a consequence, we prove that some Grassmannians of exceptional types are of wild representation type.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们从相关数据的角度描述了皮卡尔秩为一的同质变种上的同质算术科恩-麦考莱(ACM)束。这是对科斯塔和米罗-罗伊(Costa and Miró-Roig)针对 A 类型,杜、方和任(Du, Fang, and Ren)针对 B、C 和 D 类型提出的经典类型皮卡秩一的同质品种的结果的推广。我们证明,通过在例外类型的格拉斯曼上扭转线束,只有有限多个不可还原的同质 ACM 束。因此,我们证明了某些特殊类型的格拉斯曼是野表示类型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homogeneous ACM bundles on Grassmannians of exceptional types

In this paper, we characterize homogeneous arithmetically Cohen-Macaulay (ACM) bundles over homogeneous varieties of Picard rank one in terms of their associated data. This is a generalization of the result on homogeneous varieties of Picard rank one of classical types presented by Costa and Miró-Roig for type A, and Du, Fang, and Ren for types B,C and D. We show that there are only finitely many irreducible homogeneous ACM bundles by twisting line bundles over Grassmannians of exceptional types. As a consequence, we prove that some Grassmannians of exceptional types are of wild representation type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信