Crystal E. Owens, Gareth H. McKinley, A. John Hart
{"title":"通过浸入式挤压法制造高导电性碳纳米管纤维和可延伸线圈","authors":"Crystal E. Owens, Gareth H. McKinley, A. John Hart","doi":"10.1016/j.mattod.2024.04.008","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by methods of wet fiber spinning, we introduce a process using a 3D printer to create dense carbon nanotube (CNT) fibers and extensible coils with metal-like DC specific conductivity. An extrusion-based printer with an immersed nozzle extrudes a homogeneous shear-thinning ink (with initially < 1 % CNT concentration in water) into a liquid bath of antisolvent, inducing immediate precipitation-driven solidification slightly beyond the nozzle tip. This process forms continuous fibers of CNTs with conductivity up to 3 × 10<sup>5</sup> S/m, exceeding that of dense graphite and approaching that of CNTs spun from similar inks in a continuous fiber spinning process (6 × 10<sup>5</sup> S/m). The specific conductivity is up to 1 × 10<sup>3</sup> S m<sup>2</sup>/kg, comparable with gold (2.3 × 10<sup>3</sup> S m<sup>2</sup>/kg). The printing regimes are analyzed, with consideration of the draw ratio imposed during printing. Particular focus is placed on adjusting the speed of counter-diffusion of the ink solvent and the bath liquid, which allows for tuning of fiber diameter, conductivity, and specific conductivity respectively over ranges of one, four, and five orders of magnitude. The conductivity of resulting fibers is maximized when the speed of solvent counter-diffusion is high and the radius reduction is largest. When extrusion speed is also high relative to speed of the nozzle motion, a fluid mechanical coiling instability emerges which creates filaments with periodic coils, allowing for intricate designs to be formed along a linear extrusion path. Once dried, these densely coiled structures initially maintain their shape and can subsequently undergo up to 50 % strain with under 1 % change in resistance and 170 % linear extension with 20 % increase in resistance as the coils unwind. The resulting complex coil structures have applications in lightweight circuitry and as flexible interconnects.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 97-111"},"PeriodicalIF":21.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manufacturing of high-conductivity carbon nanotube fibers and extensible coils by immersed extrusion\",\"authors\":\"Crystal E. Owens, Gareth H. McKinley, A. John Hart\",\"doi\":\"10.1016/j.mattod.2024.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspired by methods of wet fiber spinning, we introduce a process using a 3D printer to create dense carbon nanotube (CNT) fibers and extensible coils with metal-like DC specific conductivity. An extrusion-based printer with an immersed nozzle extrudes a homogeneous shear-thinning ink (with initially < 1 % CNT concentration in water) into a liquid bath of antisolvent, inducing immediate precipitation-driven solidification slightly beyond the nozzle tip. This process forms continuous fibers of CNTs with conductivity up to 3 × 10<sup>5</sup> S/m, exceeding that of dense graphite and approaching that of CNTs spun from similar inks in a continuous fiber spinning process (6 × 10<sup>5</sup> S/m). The specific conductivity is up to 1 × 10<sup>3</sup> S m<sup>2</sup>/kg, comparable with gold (2.3 × 10<sup>3</sup> S m<sup>2</sup>/kg). The printing regimes are analyzed, with consideration of the draw ratio imposed during printing. Particular focus is placed on adjusting the speed of counter-diffusion of the ink solvent and the bath liquid, which allows for tuning of fiber diameter, conductivity, and specific conductivity respectively over ranges of one, four, and five orders of magnitude. The conductivity of resulting fibers is maximized when the speed of solvent counter-diffusion is high and the radius reduction is largest. When extrusion speed is also high relative to speed of the nozzle motion, a fluid mechanical coiling instability emerges which creates filaments with periodic coils, allowing for intricate designs to be formed along a linear extrusion path. Once dried, these densely coiled structures initially maintain their shape and can subsequently undergo up to 50 % strain with under 1 % change in resistance and 170 % linear extension with 20 % increase in resistance as the coils unwind. The resulting complex coil structures have applications in lightweight circuitry and as flexible interconnects.</p></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"75 \",\"pages\":\"Pages 97-111\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124000658\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000658","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Manufacturing of high-conductivity carbon nanotube fibers and extensible coils by immersed extrusion
Inspired by methods of wet fiber spinning, we introduce a process using a 3D printer to create dense carbon nanotube (CNT) fibers and extensible coils with metal-like DC specific conductivity. An extrusion-based printer with an immersed nozzle extrudes a homogeneous shear-thinning ink (with initially < 1 % CNT concentration in water) into a liquid bath of antisolvent, inducing immediate precipitation-driven solidification slightly beyond the nozzle tip. This process forms continuous fibers of CNTs with conductivity up to 3 × 105 S/m, exceeding that of dense graphite and approaching that of CNTs spun from similar inks in a continuous fiber spinning process (6 × 105 S/m). The specific conductivity is up to 1 × 103 S m2/kg, comparable with gold (2.3 × 103 S m2/kg). The printing regimes are analyzed, with consideration of the draw ratio imposed during printing. Particular focus is placed on adjusting the speed of counter-diffusion of the ink solvent and the bath liquid, which allows for tuning of fiber diameter, conductivity, and specific conductivity respectively over ranges of one, four, and five orders of magnitude. The conductivity of resulting fibers is maximized when the speed of solvent counter-diffusion is high and the radius reduction is largest. When extrusion speed is also high relative to speed of the nozzle motion, a fluid mechanical coiling instability emerges which creates filaments with periodic coils, allowing for intricate designs to be formed along a linear extrusion path. Once dried, these densely coiled structures initially maintain their shape and can subsequently undergo up to 50 % strain with under 1 % change in resistance and 170 % linear extension with 20 % increase in resistance as the coils unwind. The resulting complex coil structures have applications in lightweight circuitry and as flexible interconnects.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.