{"title":"L2(Γ) 中具有边界观测的椭圆最优控制问题的混合虚拟元素方法","authors":"Minghui Yang, Zhaojie Zhou","doi":"10.1016/j.apnum.2024.05.019","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the mixed virtual element approximation to an elliptic optimal control problem with boundary observations. The objective functional of this type of optimal control problem contains the outward normal derivatives of the state variable on the boundary, which reduces the regularity of solutions to the optimal control problems. We construct the mixed virtual element discrete scheme and derive an a priori error estimate for the optimal control problem based on the variational discretization for the control variable. Numerical experiments are carried out on different meshes to support our theoretical findings.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed virtual element methods for elliptic optimal control problems with boundary observations in L2(Γ)\",\"authors\":\"Minghui Yang, Zhaojie Zhou\",\"doi\":\"10.1016/j.apnum.2024.05.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study the mixed virtual element approximation to an elliptic optimal control problem with boundary observations. The objective functional of this type of optimal control problem contains the outward normal derivatives of the state variable on the boundary, which reduces the regularity of solutions to the optimal control problems. We construct the mixed virtual element discrete scheme and derive an a priori error estimate for the optimal control problem based on the variational discretization for the control variable. Numerical experiments are carried out on different meshes to support our theoretical findings.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Mixed virtual element methods for elliptic optimal control problems with boundary observations in L2(Γ)
In this paper, we study the mixed virtual element approximation to an elliptic optimal control problem with boundary observations. The objective functional of this type of optimal control problem contains the outward normal derivatives of the state variable on the boundary, which reduces the regularity of solutions to the optimal control problems. We construct the mixed virtual element discrete scheme and derive an a priori error estimate for the optimal control problem based on the variational discretization for the control variable. Numerical experiments are carried out on different meshes to support our theoretical findings.