Eric Engel, Alexander Wegerich, Andreas Raabgrund, M. Alexander Schneider
{"title":"钯(111)的碲化再探:形成 TePd2 表面合金但没有 PdTe<mml:math xmlns:mml=\"http://www.w3","authors":"Eric Engel, Alexander Wegerich, Andreas Raabgrund, M. Alexander Schneider","doi":"10.1016/j.susc.2024.122519","DOIUrl":null,"url":null,"abstract":"<div><p>In a recent publication [2D Materials, <strong>8</strong>, 045033 (2021)], it was reported that the growth of a monolayer PdTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in ultra-high vacuum could be achieved by deposition of tellurium on a palladium (111) crystal surface and subsequent thermal annealing. By means of low-energy electron diffraction intensity (LEED-IV) structural analysis, we show that the obtained <span><math><mrow><mfenced><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt><mo>×</mo><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow></mfenced><mtext>R30</mtext><mo>°</mo></mrow></math></span> superstructure is in fact a TePd<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> surface alloy. Attempts to produce a PdTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> layer in ultra-high vacuum by increasing the Te content on the surface were not successful.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824000700/pdfft?md5=f004cf4053bd9c7f1b9d296768eca9d4&pid=1-s2.0-S0039602824000700-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tellurization of Pd(111) revisited: Formation of a TePd2 surface alloy but no PdTe2 monolayer\",\"authors\":\"Eric Engel, Alexander Wegerich, Andreas Raabgrund, M. Alexander Schneider\",\"doi\":\"10.1016/j.susc.2024.122519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a recent publication [2D Materials, <strong>8</strong>, 045033 (2021)], it was reported that the growth of a monolayer PdTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> in ultra-high vacuum could be achieved by deposition of tellurium on a palladium (111) crystal surface and subsequent thermal annealing. By means of low-energy electron diffraction intensity (LEED-IV) structural analysis, we show that the obtained <span><math><mrow><mfenced><mrow><msqrt><mrow><mn>3</mn></mrow></msqrt><mo>×</mo><msqrt><mrow><mn>3</mn></mrow></msqrt></mrow></mfenced><mtext>R30</mtext><mo>°</mo></mrow></math></span> superstructure is in fact a TePd<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> surface alloy. Attempts to produce a PdTe<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> layer in ultra-high vacuum by increasing the Te content on the surface were not successful.</p></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0039602824000700/pdfft?md5=f004cf4053bd9c7f1b9d296768eca9d4&pid=1-s2.0-S0039602824000700-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824000700\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824000700","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tellurization of Pd(111) revisited: Formation of a TePd2 surface alloy but no PdTe2 monolayer
In a recent publication [2D Materials, 8, 045033 (2021)], it was reported that the growth of a monolayer PdTe in ultra-high vacuum could be achieved by deposition of tellurium on a palladium (111) crystal surface and subsequent thermal annealing. By means of low-energy electron diffraction intensity (LEED-IV) structural analysis, we show that the obtained superstructure is in fact a TePd surface alloy. Attempts to produce a PdTe layer in ultra-high vacuum by increasing the Te content on the surface were not successful.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.