绝缘衬底上应变α-锑的三维拓扑半金属相

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jakub Polaczyński , Gauthier Krizman , Alexandr Kazakov , Bartłomiej Turowski , Joaquín Bermejo Ortiz , Rafał Rudniewski , Tomasz Wojciechowski , Piotr Dłużewski , Marta Aleszkiewicz , Wojciech Zaleszczyk , Bogusława Kurowska , Zahir Muhammad , Marcin Rosmus , Natalia Olszowska , Louis-Anne de Vaulchier , Yves Guldner , Tomasz Wojtowicz , Valentine V. Volobuev
{"title":"绝缘衬底上应变α-锑的三维拓扑半金属相","authors":"Jakub Polaczyński ,&nbsp;Gauthier Krizman ,&nbsp;Alexandr Kazakov ,&nbsp;Bartłomiej Turowski ,&nbsp;Joaquín Bermejo Ortiz ,&nbsp;Rafał Rudniewski ,&nbsp;Tomasz Wojciechowski ,&nbsp;Piotr Dłużewski ,&nbsp;Marta Aleszkiewicz ,&nbsp;Wojciech Zaleszczyk ,&nbsp;Bogusława Kurowska ,&nbsp;Zahir Muhammad ,&nbsp;Marcin Rosmus ,&nbsp;Natalia Olszowska ,&nbsp;Louis-Anne de Vaulchier ,&nbsp;Yves Guldner ,&nbsp;Tomasz Wojtowicz ,&nbsp;Valentine V. Volobuev","doi":"10.1016/j.mattod.2024.04.014","DOIUrl":null,"url":null,"abstract":"<div><p><span><math><mrow><mi>α</mi></mrow></math></span>-Sn is an elemental topological material, whose topological phases can be tuned by strain and magnetic field. Such tunability offers a substantial potential for topological electronics. However, InSb substrates, commonly used to stabilize <span><math><mrow><mi>α</mi></mrow></math></span>-Sn allotrope, suffer from parallel conduction, restricting transport investigations and potential applications. Here, the successful MBE growth of high-quality <span><math><mrow><mi>α</mi></mrow></math></span>-Sn layers on insulating, hybrid (001) CdTe/GaAs substrates, with bulk electron mobility approaching 20000 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup> is reported. The electronic properties of the samples are systematically investigated by independent complementary techniques, enabling thorough characterization of the 3D Dirac (DSM) and Weyl (WSM) semimetal phases induced by the strains and magnetic field, respectively. Magneto-optical experiments, corroborated with band structure modelling, provide an exhaustive description of the bulk states in the DSM phase. The modelled electronic structure is directly observed in angle-resolved photoemission spectroscopy, which reveals linearly dispersing bands near the Fermi level. The first detailed study of negative longitudinal magnetoresistance relates this effect to the chiral anomaly and, consequently, to the presence of WSM. Observation of the <span><math><mrow><mi>π</mi></mrow></math></span> Berry phase in Shubnikov-de Haas oscillations agrees with the topologically non-trivial nature of the investigated samples. Our findings establish <span><math><mrow><mi>α</mi></mrow></math></span>-Sn as an attractive topological material for exploring relativistic physics and future applications.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"75 ","pages":"Pages 135-148"},"PeriodicalIF":21.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D topological semimetal phases of strained α-Sn on insulating substrate\",\"authors\":\"Jakub Polaczyński ,&nbsp;Gauthier Krizman ,&nbsp;Alexandr Kazakov ,&nbsp;Bartłomiej Turowski ,&nbsp;Joaquín Bermejo Ortiz ,&nbsp;Rafał Rudniewski ,&nbsp;Tomasz Wojciechowski ,&nbsp;Piotr Dłużewski ,&nbsp;Marta Aleszkiewicz ,&nbsp;Wojciech Zaleszczyk ,&nbsp;Bogusława Kurowska ,&nbsp;Zahir Muhammad ,&nbsp;Marcin Rosmus ,&nbsp;Natalia Olszowska ,&nbsp;Louis-Anne de Vaulchier ,&nbsp;Yves Guldner ,&nbsp;Tomasz Wojtowicz ,&nbsp;Valentine V. Volobuev\",\"doi\":\"10.1016/j.mattod.2024.04.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><math><mrow><mi>α</mi></mrow></math></span>-Sn is an elemental topological material, whose topological phases can be tuned by strain and magnetic field. Such tunability offers a substantial potential for topological electronics. However, InSb substrates, commonly used to stabilize <span><math><mrow><mi>α</mi></mrow></math></span>-Sn allotrope, suffer from parallel conduction, restricting transport investigations and potential applications. Here, the successful MBE growth of high-quality <span><math><mrow><mi>α</mi></mrow></math></span>-Sn layers on insulating, hybrid (001) CdTe/GaAs substrates, with bulk electron mobility approaching 20000 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup> is reported. The electronic properties of the samples are systematically investigated by independent complementary techniques, enabling thorough characterization of the 3D Dirac (DSM) and Weyl (WSM) semimetal phases induced by the strains and magnetic field, respectively. Magneto-optical experiments, corroborated with band structure modelling, provide an exhaustive description of the bulk states in the DSM phase. The modelled electronic structure is directly observed in angle-resolved photoemission spectroscopy, which reveals linearly dispersing bands near the Fermi level. The first detailed study of negative longitudinal magnetoresistance relates this effect to the chiral anomaly and, consequently, to the presence of WSM. Observation of the <span><math><mrow><mi>π</mi></mrow></math></span> Berry phase in Shubnikov-de Haas oscillations agrees with the topologically non-trivial nature of the investigated samples. Our findings establish <span><math><mrow><mi>α</mi></mrow></math></span>-Sn as an attractive topological material for exploring relativistic physics and future applications.</p></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"75 \",\"pages\":\"Pages 135-148\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124000816\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000816","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

α-Sn 是一种元素拓扑材料,其拓扑相可以通过应变和磁场进行调整。这种可调性为拓扑电子学提供了巨大潜力。然而,通常用于稳定α-Sn 同素异形体的 InSb 衬底存在平行传导问题,限制了传输研究和潜在应用。本文报告了在绝缘、混合 (001) CdTe/GaAs 基底上成功通过 MBE 生长出高质量 α-Sn 层的情况,该层的体电子迁移率接近 20000 cm2V-1s-1。通过独立的互补技术对样品的电子特性进行了系统研究,从而对应变和磁场分别诱导的三维狄拉克(DSM)和韦尔(WSM)半金属相进行了全面描述。磁光实验与带状结构建模相互印证,详尽描述了 DSM 相的体态。角度分辨光发射光谱可以直接观察到建模的电子结构,它揭示了费米级附近的线性分散带。对负纵向磁阻的首次详细研究将这一效应与手性反常以及 WSM 的存在联系起来。在舒布尼科夫-德-哈斯振荡中观察到的π贝里相与所研究样品的拓扑非三维性质相吻合。我们的研究结果证明,α-Sn 是探索相对论物理和未来应用的一种极具吸引力的拓扑材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D topological semimetal phases of strained α-Sn on insulating substrate

3D topological semimetal phases of strained α-Sn on insulating substrate

3D topological semimetal phases of strained α-Sn on insulating substrate

α-Sn is an elemental topological material, whose topological phases can be tuned by strain and magnetic field. Such tunability offers a substantial potential for topological electronics. However, InSb substrates, commonly used to stabilize α-Sn allotrope, suffer from parallel conduction, restricting transport investigations and potential applications. Here, the successful MBE growth of high-quality α-Sn layers on insulating, hybrid (001) CdTe/GaAs substrates, with bulk electron mobility approaching 20000 cm2V−1s−1 is reported. The electronic properties of the samples are systematically investigated by independent complementary techniques, enabling thorough characterization of the 3D Dirac (DSM) and Weyl (WSM) semimetal phases induced by the strains and magnetic field, respectively. Magneto-optical experiments, corroborated with band structure modelling, provide an exhaustive description of the bulk states in the DSM phase. The modelled electronic structure is directly observed in angle-resolved photoemission spectroscopy, which reveals linearly dispersing bands near the Fermi level. The first detailed study of negative longitudinal magnetoresistance relates this effect to the chiral anomaly and, consequently, to the presence of WSM. Observation of the π Berry phase in Shubnikov-de Haas oscillations agrees with the topologically non-trivial nature of the investigated samples. Our findings establish α-Sn as an attractive topological material for exploring relativistic physics and future applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信