用于蒸汽应用的耐高温可降解无机凝胶的制备及其性能

IF 3.2 3区 工程技术 Q1 ENGINEERING, PETROLEUM
SPE Journal Pub Date : 2024-05-01 DOI:10.2118/219775-pa
Lifeng Chen, Zhaonian Zhang, Huiyong Zeng, Feiyang Huang, Xuanfeng Lu, Weiwei Sheng
{"title":"用于蒸汽应用的耐高温可降解无机凝胶的制备及其性能","authors":"Lifeng Chen, Zhaonian Zhang, Huiyong Zeng, Feiyang Huang, Xuanfeng Lu, Weiwei Sheng","doi":"10.2118/219775-pa","DOIUrl":null,"url":null,"abstract":"\n To address the problems of steam channeling caused by the nonhomogeneity and fluid compatibility of the reservoir in heavy oil reservoirs and the permanent damage to the reservoir easily caused by traditional plugging agents, this study adopted polyaluminum chloride (PAC) as the main agent, urea as the coagulant promoter, and thiourea as the stabilizer and prepared a high-temperature-resistant (up to 350°C) degradable inorganic aluminum gel with excellent performance. Initially, scanning electron microscope (SEM) tests were conducted on gels with and without urea. Energy-dispersive X-ray spectroscopy (EDS)-mapping analysis of gels immersed in water with different mineralization levels for 5 days was then performed. The results revealed that the addition of urea led to a tighter and more complete crosslinked structure, significantly enhancing the mechanical strength of the gel. As water mineral content increased, the gel’s microstructure became denser and smoother. Metal cations on the cross-sectional surface increased gradually and distributed uniformly, further confirming the mechanism of the synergistic salt effect of soluble strong electrolytes and urea in strengthening the gel. Finally, the plugging and degradable properties of the gel were evaluated, and the results showed that the plugging percentage of the gel could still reach 97.6% after aging at 350°C for 30 days, and the gel had excellent plugging and diversion in dual sandpack experiments where the permeability ratio was less than 44. At 250°C, the degradation percentage of the gel was more than 98% at 5 days under the nonacid degradation system and 94% at 5 days under the acid degradation system. The gel showed good degradability and effectively reduced the damage to the reservoir.","PeriodicalId":22252,"journal":{"name":"SPE Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Performance of High-Temperature-Resistant, Degradable Inorganic Gel for Steam Applications\",\"authors\":\"Lifeng Chen, Zhaonian Zhang, Huiyong Zeng, Feiyang Huang, Xuanfeng Lu, Weiwei Sheng\",\"doi\":\"10.2118/219775-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To address the problems of steam channeling caused by the nonhomogeneity and fluid compatibility of the reservoir in heavy oil reservoirs and the permanent damage to the reservoir easily caused by traditional plugging agents, this study adopted polyaluminum chloride (PAC) as the main agent, urea as the coagulant promoter, and thiourea as the stabilizer and prepared a high-temperature-resistant (up to 350°C) degradable inorganic aluminum gel with excellent performance. Initially, scanning electron microscope (SEM) tests were conducted on gels with and without urea. Energy-dispersive X-ray spectroscopy (EDS)-mapping analysis of gels immersed in water with different mineralization levels for 5 days was then performed. The results revealed that the addition of urea led to a tighter and more complete crosslinked structure, significantly enhancing the mechanical strength of the gel. As water mineral content increased, the gel’s microstructure became denser and smoother. Metal cations on the cross-sectional surface increased gradually and distributed uniformly, further confirming the mechanism of the synergistic salt effect of soluble strong electrolytes and urea in strengthening the gel. Finally, the plugging and degradable properties of the gel were evaluated, and the results showed that the plugging percentage of the gel could still reach 97.6% after aging at 350°C for 30 days, and the gel had excellent plugging and diversion in dual sandpack experiments where the permeability ratio was less than 44. At 250°C, the degradation percentage of the gel was more than 98% at 5 days under the nonacid degradation system and 94% at 5 days under the acid degradation system. The gel showed good degradability and effectively reduced the damage to the reservoir.\",\"PeriodicalId\":22252,\"journal\":{\"name\":\"SPE Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/219775-pa\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/219775-pa","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
引用次数: 0

摘要

针对重油油藏储层非均质性和流体相容性导致的蒸汽通道问题,以及传统堵剂容易对储层造成永久性破坏的问题,本研究采用聚合氯化铝(PAC)为主剂,尿素为促凝剂,硫脲为稳定剂,制备了一种性能优异的耐高温(高达 350°C)可降解无机铝凝胶。首先,对含尿素和不含尿素的凝胶进行了扫描电子显微镜(SEM)测试。然后对浸泡在水中 5 天且矿化度不同的凝胶进行了能量色散 X 射线光谱(EDS)图谱分析。结果表明,添加尿素后,凝胶的交联结构更紧密、更完整,大大提高了凝胶的机械强度。随着水矿物质含量的增加,凝胶的微观结构变得更加致密和光滑。横截面上的金属阳离子逐渐增多且分布均匀,进一步证实了可溶性强电解质和尿素的协同盐效应强化凝胶的机理。最后,对凝胶的堵塞和降解性能进行了评价,结果表明,凝胶在350℃下老化30天后,其堵塞率仍能达到97.6%,在渗透率比小于44的双砂层实验中,凝胶具有良好的堵塞和分流性能。在 250°C 下,凝胶在非酸性降解体系中 5 天的降解率超过 98%,在酸性降解体系中 5 天的降解率达到 94%。凝胶具有良好的降解性,能有效减少对储层的损害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and Performance of High-Temperature-Resistant, Degradable Inorganic Gel for Steam Applications
To address the problems of steam channeling caused by the nonhomogeneity and fluid compatibility of the reservoir in heavy oil reservoirs and the permanent damage to the reservoir easily caused by traditional plugging agents, this study adopted polyaluminum chloride (PAC) as the main agent, urea as the coagulant promoter, and thiourea as the stabilizer and prepared a high-temperature-resistant (up to 350°C) degradable inorganic aluminum gel with excellent performance. Initially, scanning electron microscope (SEM) tests were conducted on gels with and without urea. Energy-dispersive X-ray spectroscopy (EDS)-mapping analysis of gels immersed in water with different mineralization levels for 5 days was then performed. The results revealed that the addition of urea led to a tighter and more complete crosslinked structure, significantly enhancing the mechanical strength of the gel. As water mineral content increased, the gel’s microstructure became denser and smoother. Metal cations on the cross-sectional surface increased gradually and distributed uniformly, further confirming the mechanism of the synergistic salt effect of soluble strong electrolytes and urea in strengthening the gel. Finally, the plugging and degradable properties of the gel were evaluated, and the results showed that the plugging percentage of the gel could still reach 97.6% after aging at 350°C for 30 days, and the gel had excellent plugging and diversion in dual sandpack experiments where the permeability ratio was less than 44. At 250°C, the degradation percentage of the gel was more than 98% at 5 days under the nonacid degradation system and 94% at 5 days under the acid degradation system. The gel showed good degradability and effectively reduced the damage to the reservoir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SPE Journal
SPE Journal 工程技术-工程:石油
CiteScore
7.20
自引率
11.10%
发文量
229
审稿时长
4.5 months
期刊介绍: Covers theories and emerging concepts spanning all aspects of engineering for oil and gas exploration and production, including reservoir characterization, multiphase flow, drilling dynamics, well architecture, gas well deliverability, numerical simulation, enhanced oil recovery, CO2 sequestration, and benchmarking and performance indicators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信