Ruogu Pan , Zhenjun Zhao , Dongwei Xu , Chunlai Li , Qiang Xia
{"title":"GPX4 通过 GRHL3/PTEN/PI3K/AKT 轴转录促进肝癌转移。","authors":"Ruogu Pan , Zhenjun Zhao , Dongwei Xu , Chunlai Li , Qiang Xia","doi":"10.1016/j.trsl.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is among the most fatal types of malignancy, with a high prevalence of relapse and limited treatment options. As a critical regulator of ferroptosis and redox homeostasis, glutathione peroxidase 4 (<em>GPX4</em>) is commonly upregulated in HCC and is hypothesized to facilitate cancer metastasis, but this has not been fully explored in HCC. Here, we report that up-regulated <em>GPX4</em> expression in HCC is strongly associated with tumor metastasis. FACS-based <em>in vivo</em> and <em>in vitro</em> analysis revealed that a cell subpopulation featuring lower cellular reactive oxygen species levels and ferroptosis resistance were involved in <em>GPX4</em>-mediated HCC metastasis. Mechanistically, <em>GPX4</em> overexpressed in HCC tumor cells was enriched in the nucleus and transcriptionally silenced <em>GRHL3</em> expression, thereby activating PTEN/PI3K/AKT signaling and promoting HCC metastasis. Functional studies demonstrated that GPX4 amino acids 110–145 are a binding site that interacts with the <em>GRHL3</em> promoter. As AKT is a downstream target of GPX4, we combined the AKT inhibitor, AKT-IN3, with lenvatinib to effectively inhibit HCC tumor cell metastasis. Overall, these results indicate that the GPX4/GRHL3/PTEN/PI3K/AKT axis controls HCC cell metastasis and lenvatinib combined with AKT-IN3 represents a potential therapeutic strategy for patients with metastatic HCC.</p></div>","PeriodicalId":23226,"journal":{"name":"Translational Research","volume":"271 ","pages":"Pages 79-92"},"PeriodicalIF":6.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPX4 transcriptionally promotes liver cancer metastasis via GRHL3/PTEN/PI3K/AKT axis\",\"authors\":\"Ruogu Pan , Zhenjun Zhao , Dongwei Xu , Chunlai Li , Qiang Xia\",\"doi\":\"10.1016/j.trsl.2024.05.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hepatocellular carcinoma (HCC) is among the most fatal types of malignancy, with a high prevalence of relapse and limited treatment options. As a critical regulator of ferroptosis and redox homeostasis, glutathione peroxidase 4 (<em>GPX4</em>) is commonly upregulated in HCC and is hypothesized to facilitate cancer metastasis, but this has not been fully explored in HCC. Here, we report that up-regulated <em>GPX4</em> expression in HCC is strongly associated with tumor metastasis. FACS-based <em>in vivo</em> and <em>in vitro</em> analysis revealed that a cell subpopulation featuring lower cellular reactive oxygen species levels and ferroptosis resistance were involved in <em>GPX4</em>-mediated HCC metastasis. Mechanistically, <em>GPX4</em> overexpressed in HCC tumor cells was enriched in the nucleus and transcriptionally silenced <em>GRHL3</em> expression, thereby activating PTEN/PI3K/AKT signaling and promoting HCC metastasis. Functional studies demonstrated that GPX4 amino acids 110–145 are a binding site that interacts with the <em>GRHL3</em> promoter. As AKT is a downstream target of GPX4, we combined the AKT inhibitor, AKT-IN3, with lenvatinib to effectively inhibit HCC tumor cell metastasis. Overall, these results indicate that the GPX4/GRHL3/PTEN/PI3K/AKT axis controls HCC cell metastasis and lenvatinib combined with AKT-IN3 represents a potential therapeutic strategy for patients with metastatic HCC.</p></div>\",\"PeriodicalId\":23226,\"journal\":{\"name\":\"Translational Research\",\"volume\":\"271 \",\"pages\":\"Pages 79-92\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1931524424001075\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1931524424001075","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
GPX4 transcriptionally promotes liver cancer metastasis via GRHL3/PTEN/PI3K/AKT axis
Hepatocellular carcinoma (HCC) is among the most fatal types of malignancy, with a high prevalence of relapse and limited treatment options. As a critical regulator of ferroptosis and redox homeostasis, glutathione peroxidase 4 (GPX4) is commonly upregulated in HCC and is hypothesized to facilitate cancer metastasis, but this has not been fully explored in HCC. Here, we report that up-regulated GPX4 expression in HCC is strongly associated with tumor metastasis. FACS-based in vivo and in vitro analysis revealed that a cell subpopulation featuring lower cellular reactive oxygen species levels and ferroptosis resistance were involved in GPX4-mediated HCC metastasis. Mechanistically, GPX4 overexpressed in HCC tumor cells was enriched in the nucleus and transcriptionally silenced GRHL3 expression, thereby activating PTEN/PI3K/AKT signaling and promoting HCC metastasis. Functional studies demonstrated that GPX4 amino acids 110–145 are a binding site that interacts with the GRHL3 promoter. As AKT is a downstream target of GPX4, we combined the AKT inhibitor, AKT-IN3, with lenvatinib to effectively inhibit HCC tumor cell metastasis. Overall, these results indicate that the GPX4/GRHL3/PTEN/PI3K/AKT axis controls HCC cell metastasis and lenvatinib combined with AKT-IN3 represents a potential therapeutic strategy for patients with metastatic HCC.
期刊介绍:
Translational Research (formerly The Journal of Laboratory and Clinical Medicine) delivers original investigations in the broad fields of laboratory, clinical, and public health research. Published monthly since 1915, it keeps readers up-to-date on significant biomedical research from all subspecialties of medicine.