加权最小二乘法定位方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Luigi Brugnano , Felice Iavernaro , Ewa B. Weinmüller
{"title":"加权最小二乘法定位方法","authors":"Luigi Brugnano ,&nbsp;Felice Iavernaro ,&nbsp;Ewa B. Weinmüller","doi":"10.1016/j.apnum.2024.05.017","DOIUrl":null,"url":null,"abstract":"<div><p>We consider overdetermined collocation methods and propose a weighted least squares approach to derive a numerical solution. The discrete problem requires the evaluation of the Jacobian of the vector field which, however, appears in a <span><math><mi>O</mi><mo>(</mo><mi>h</mi><mo>)</mo></math></span> term, <em>h</em> being the stepsize. We show that, by neglecting this infinitesimal term, the resulting scheme becomes a low-rank Runge–Kutta method. Among the possible choices of the weights distribution, we analyze the one based on the quadrature formula underlying the collocation conditions. A few numerical illustrations are included to better elucidate the potential of the method.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001235/pdfft?md5=55c77be155705bdd999f3cc3fb7b73c2&pid=1-s2.0-S0168927424001235-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Weighted least squares collocation methods\",\"authors\":\"Luigi Brugnano ,&nbsp;Felice Iavernaro ,&nbsp;Ewa B. Weinmüller\",\"doi\":\"10.1016/j.apnum.2024.05.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider overdetermined collocation methods and propose a weighted least squares approach to derive a numerical solution. The discrete problem requires the evaluation of the Jacobian of the vector field which, however, appears in a <span><math><mi>O</mi><mo>(</mo><mi>h</mi><mo>)</mo></math></span> term, <em>h</em> being the stepsize. We show that, by neglecting this infinitesimal term, the resulting scheme becomes a low-rank Runge–Kutta method. Among the possible choices of the weights distribution, we analyze the one based on the quadrature formula underlying the collocation conditions. A few numerical illustrations are included to better elucidate the potential of the method.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001235/pdfft?md5=55c77be155705bdd999f3cc3fb7b73c2&pid=1-s2.0-S0168927424001235-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了超定配位法,并提出了一种加权最小二乘法来推导数值解。离散问题需要评估矢量场的雅各布,但雅各布出现在一个 O(h) 项中,h 是步长。我们证明,通过忽略这个无穷小项,所得到的方案就变成了低秩 Runge-Kutta 方法。在可能的权重分布选择中,我们分析了基于配位条件的正交公式的权重分布。为了更好地阐明该方法的潜力,我们还提供了一些数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted least squares collocation methods

We consider overdetermined collocation methods and propose a weighted least squares approach to derive a numerical solution. The discrete problem requires the evaluation of the Jacobian of the vector field which, however, appears in a O(h) term, h being the stepsize. We show that, by neglecting this infinitesimal term, the resulting scheme becomes a low-rank Runge–Kutta method. Among the possible choices of the weights distribution, we analyze the one based on the quadrature formula underlying the collocation conditions. A few numerical illustrations are included to better elucidate the potential of the method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信