使用混合方法检测假新闻

Him Gohil, Vandana Joshi, Snehal Gandhi
{"title":"使用混合方法检测假新闻","authors":"Him Gohil, Vandana Joshi, Snehal Gandhi","doi":"10.17821/srels/2024/v61i2/171046","DOIUrl":null,"url":null,"abstract":"Over the last few years, fake news has dramatically increased on social media. Fake news can originate from any number of sources and is shared across different social platforms. This type of information is used to spread for fun or economic gain. Our goal is to stop distributing this type of misleading information on social media or any other platform. In this paper, we have proposed a hybrid model (RoBERTa and BERT) to detect fake news. Our proposed architecture is based on the LIAR multi-label dataset. Our model shows promising results.","PeriodicalId":513185,"journal":{"name":"Journal of Information and Knowledge","volume":" 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fake News Detection Using Hybrid Approach\",\"authors\":\"Him Gohil, Vandana Joshi, Snehal Gandhi\",\"doi\":\"10.17821/srels/2024/v61i2/171046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the last few years, fake news has dramatically increased on social media. Fake news can originate from any number of sources and is shared across different social platforms. This type of information is used to spread for fun or economic gain. Our goal is to stop distributing this type of misleading information on social media or any other platform. In this paper, we have proposed a hybrid model (RoBERTa and BERT) to detect fake news. Our proposed architecture is based on the LIAR multi-label dataset. Our model shows promising results.\",\"PeriodicalId\":513185,\"journal\":{\"name\":\"Journal of Information and Knowledge\",\"volume\":\" 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17821/srels/2024/v61i2/171046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17821/srels/2024/v61i2/171046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年里,社交媒体上的假新闻急剧增加。假新闻可能来自任何来源,并在不同的社交平台上分享。这类信息被用于传播娱乐或经济利益。我们的目标是阻止这类误导性信息在社交媒体或任何其他平台上传播。在本文中,我们提出了一种混合模型(RoBERTa 和 BERT)来检测假新闻。我们提出的架构基于 LIAR 多标签数据集。我们的模型显示出良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fake News Detection Using Hybrid Approach
Over the last few years, fake news has dramatically increased on social media. Fake news can originate from any number of sources and is shared across different social platforms. This type of information is used to spread for fun or economic gain. Our goal is to stop distributing this type of misleading information on social media or any other platform. In this paper, we have proposed a hybrid model (RoBERTa and BERT) to detect fake news. Our proposed architecture is based on the LIAR multi-label dataset. Our model shows promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信