{"title":"超宽带、易阵列 Magic-T 的设计方法:用于毫米/亚毫米相机的 6-14 GHz 比例模型","authors":"Shuhei Inoue, Kah Wuy Chin, Shinsuke Uno, Kotaro Kohno, Yuka Niwa, Toyo Naganuma, Ryosuke Yamamura, Kazuki Watanabe, Tatsuya Takekoshi, Tai Oshima","doi":"10.1007/s10909-024-03150-w","DOIUrl":null,"url":null,"abstract":"<div><p>We established a design method for a Magic-T with a single-layer dielectric/metal structure suitable for both wideband and multi-element applications for millimeter and submillimeter wave imaging observations. The design method was applied to a Magic-T with a coupled-line, stubs, and single-stage impedance transformers in a frequency-scaled model (6–14 GHz) that is relatively easy to demonstrate through manufacturing and evaluation. The major problem is that using the conventional perfect matching condition for a coupled-line alone produces an impractically large width coplanar coupled-line (CPCL) to satisfy the desired bandwidth ratio. In our study, by removing this constraint and optimizing impedances utilizing a circuit simulator with high computation speed, we found a solution with a <span>\\(\\sim\\)</span> 180 μm wide CPCL, which is approximately an order of magnitude smaller than the conventional analytical solution. Furthermore, considering the effect of transition discontinuities in the transmission lines, we optimized the line length and obtained a design solution with return loss < − 20 dB, amplitude imbalance < 0.1 dB, and phase imbalance < 0.5<span>\\(^{\\circ }\\)</span> from 6.1 to 14.1 GHz.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"216 Part 3","pages":"378 - 385"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03150-w.pdf","citationCount":"0","resultStr":"{\"title\":\"A Design Method of an Ultra-Wideband and Easy-to-Array Magic-T: A 6-14 GHz Scaled Model for a mm/submm Camera\",\"authors\":\"Shuhei Inoue, Kah Wuy Chin, Shinsuke Uno, Kotaro Kohno, Yuka Niwa, Toyo Naganuma, Ryosuke Yamamura, Kazuki Watanabe, Tatsuya Takekoshi, Tai Oshima\",\"doi\":\"10.1007/s10909-024-03150-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We established a design method for a Magic-T with a single-layer dielectric/metal structure suitable for both wideband and multi-element applications for millimeter and submillimeter wave imaging observations. The design method was applied to a Magic-T with a coupled-line, stubs, and single-stage impedance transformers in a frequency-scaled model (6–14 GHz) that is relatively easy to demonstrate through manufacturing and evaluation. The major problem is that using the conventional perfect matching condition for a coupled-line alone produces an impractically large width coplanar coupled-line (CPCL) to satisfy the desired bandwidth ratio. In our study, by removing this constraint and optimizing impedances utilizing a circuit simulator with high computation speed, we found a solution with a <span>\\\\(\\\\sim\\\\)</span> 180 μm wide CPCL, which is approximately an order of magnitude smaller than the conventional analytical solution. Furthermore, considering the effect of transition discontinuities in the transmission lines, we optimized the line length and obtained a design solution with return loss < − 20 dB, amplitude imbalance < 0.1 dB, and phase imbalance < 0.5<span>\\\\(^{\\\\circ }\\\\)</span> from 6.1 to 14.1 GHz.</p></div>\",\"PeriodicalId\":641,\"journal\":{\"name\":\"Journal of Low Temperature Physics\",\"volume\":\"216 Part 3\",\"pages\":\"378 - 385\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10909-024-03150-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Temperature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10909-024-03150-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03150-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
A Design Method of an Ultra-Wideband and Easy-to-Array Magic-T: A 6-14 GHz Scaled Model for a mm/submm Camera
We established a design method for a Magic-T with a single-layer dielectric/metal structure suitable for both wideband and multi-element applications for millimeter and submillimeter wave imaging observations. The design method was applied to a Magic-T with a coupled-line, stubs, and single-stage impedance transformers in a frequency-scaled model (6–14 GHz) that is relatively easy to demonstrate through manufacturing and evaluation. The major problem is that using the conventional perfect matching condition for a coupled-line alone produces an impractically large width coplanar coupled-line (CPCL) to satisfy the desired bandwidth ratio. In our study, by removing this constraint and optimizing impedances utilizing a circuit simulator with high computation speed, we found a solution with a \(\sim\) 180 μm wide CPCL, which is approximately an order of magnitude smaller than the conventional analytical solution. Furthermore, considering the effect of transition discontinuities in the transmission lines, we optimized the line length and obtained a design solution with return loss < − 20 dB, amplitude imbalance < 0.1 dB, and phase imbalance < 0.5\(^{\circ }\) from 6.1 to 14.1 GHz.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.