生物质热利用过程中氨基酸的降解途径:综述

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Mubarak Al-Kwradi, Mohammednoor Altarawneh
{"title":"生物质热利用过程中氨基酸的降解途径:综述","authors":"Mubarak Al-Kwradi,&nbsp;Mohammednoor Altarawneh","doi":"10.1007/s11705-024-2433-1","DOIUrl":null,"url":null,"abstract":"<div><p>Amino acids are important nitrogen carriers in biomass and entail a broad spectrum of industrial uses, most notably as food additives, pharmaceutical ingredients, and raw materials for bio-based plastics. Attaining detailed information in regard to the fragmentation of amino acids is essential to comprehend the nitrogen transformation chemistry at conditions encountered during hydrothermal and pyrolytic degradation of biomass. The underlying aim of this review is to survey literature studies pertinent to the complex structures of amino acids, their formation yields from various categories of biomass, and their fragmentation routes at elevated temperatures and in the aqueous media. Two predominant degradation reactions ensue in the decomposition of amino acids, namely deamination and decarboxylation. Notably, minor differences in structure can greatly affect the fate for each amino acid. Moreover, amino acids, being nitrogen-rich compounds, play pivotal roles across various fields. There is a growing interest in producing varied types and configurations of amino acids. Microbial fermentation appears to a viable approach to produce amino acids at an industrial scale. One innovative method under investigation is catalytic synthesis using renewable biomass as feedstocks. Such a method taps into the inherent nitrogen in biomass sources like chitin and proteins, eliminating the need for external nitrogen sources. This environmentally friendly approach is in line with green chemistry principles and has been gathering momentum in the scientific community.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradation pathways of amino acids during thermal utilization of biomass: a review\",\"authors\":\"Mubarak Al-Kwradi,&nbsp;Mohammednoor Altarawneh\",\"doi\":\"10.1007/s11705-024-2433-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Amino acids are important nitrogen carriers in biomass and entail a broad spectrum of industrial uses, most notably as food additives, pharmaceutical ingredients, and raw materials for bio-based plastics. Attaining detailed information in regard to the fragmentation of amino acids is essential to comprehend the nitrogen transformation chemistry at conditions encountered during hydrothermal and pyrolytic degradation of biomass. The underlying aim of this review is to survey literature studies pertinent to the complex structures of amino acids, their formation yields from various categories of biomass, and their fragmentation routes at elevated temperatures and in the aqueous media. Two predominant degradation reactions ensue in the decomposition of amino acids, namely deamination and decarboxylation. Notably, minor differences in structure can greatly affect the fate for each amino acid. Moreover, amino acids, being nitrogen-rich compounds, play pivotal roles across various fields. There is a growing interest in producing varied types and configurations of amino acids. Microbial fermentation appears to a viable approach to produce amino acids at an industrial scale. One innovative method under investigation is catalytic synthesis using renewable biomass as feedstocks. Such a method taps into the inherent nitrogen in biomass sources like chitin and proteins, eliminating the need for external nitrogen sources. This environmentally friendly approach is in line with green chemistry principles and has been gathering momentum in the scientific community.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2433-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2433-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

氨基酸是生物质中重要的氮载体,具有广泛的工业用途,特别是作为食品添加剂、药物成分和生物基塑料的原料。要了解生物质在水热降解和热解降解条件下的氮转化化学过程,就必须获得氨基酸破碎的详细信息。本综述的基本目的是调查与氨基酸的复杂结构、各类生物质中氨基酸的形成率以及在高温和水介质中氨基酸的破碎途径有关的文献研究。氨基酸分解过程中会发生两种主要的降解反应,即脱氨和脱羧。值得注意的是,结构上的细微差别会极大地影响每种氨基酸的命运。此外,氨基酸作为富含氮的化合物,在各个领域都发挥着举足轻重的作用。人们对生产各种类型和结构的氨基酸越来越感兴趣。微生物发酵似乎是工业化生产氨基酸的一种可行方法。一种正在研究的创新方法是使用可再生生物质作为原料进行催化合成。这种方法利用甲壳素和蛋白质等生物质来源中固有的氮,无需外部氮源。这种对环境友好的方法符合绿色化学原则,在科学界的发展势头日益强劲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Degradation pathways of amino acids during thermal utilization of biomass: a review

Degradation pathways of amino acids during thermal utilization of biomass: a review

Amino acids are important nitrogen carriers in biomass and entail a broad spectrum of industrial uses, most notably as food additives, pharmaceutical ingredients, and raw materials for bio-based plastics. Attaining detailed information in regard to the fragmentation of amino acids is essential to comprehend the nitrogen transformation chemistry at conditions encountered during hydrothermal and pyrolytic degradation of biomass. The underlying aim of this review is to survey literature studies pertinent to the complex structures of amino acids, their formation yields from various categories of biomass, and their fragmentation routes at elevated temperatures and in the aqueous media. Two predominant degradation reactions ensue in the decomposition of amino acids, namely deamination and decarboxylation. Notably, minor differences in structure can greatly affect the fate for each amino acid. Moreover, amino acids, being nitrogen-rich compounds, play pivotal roles across various fields. There is a growing interest in producing varied types and configurations of amino acids. Microbial fermentation appears to a viable approach to produce amino acids at an industrial scale. One innovative method under investigation is catalytic synthesis using renewable biomass as feedstocks. Such a method taps into the inherent nitrogen in biomass sources like chitin and proteins, eliminating the need for external nitrogen sources. This environmentally friendly approach is in line with green chemistry principles and has been gathering momentum in the scientific community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信