可学习函数的构成稀疏性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Tomaso Poggio, M. Fraser
{"title":"可学习函数的构成稀疏性","authors":"Tomaso Poggio, M. Fraser","doi":"10.1090/bull/1820","DOIUrl":null,"url":null,"abstract":"Neural networks have demonstrated impressive success in various domains, raising the question of what fundamental principles underlie the effectiveness of the best AI systems and quite possibly of human intelligence. This perspective argues that compositional sparsity, or the property that a compositional function have “few” constituent functions, each depending on only a small subset of inputs, is a key principle underlying successful learning architectures. Surprisingly, all functions that are efficiently Turing computable have a compositional sparse representation. Furthermore, deep networks that are also sparse can exploit this general property to avoid the “curse of dimensionality”. This framework suggests interesting implications about the role that machine learning may play in mathematics.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compositional sparsity of learnable functions\",\"authors\":\"Tomaso Poggio, M. Fraser\",\"doi\":\"10.1090/bull/1820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks have demonstrated impressive success in various domains, raising the question of what fundamental principles underlie the effectiveness of the best AI systems and quite possibly of human intelligence. This perspective argues that compositional sparsity, or the property that a compositional function have “few” constituent functions, each depending on only a small subset of inputs, is a key principle underlying successful learning architectures. Surprisingly, all functions that are efficiently Turing computable have a compositional sparse representation. Furthermore, deep networks that are also sparse can exploit this general property to avoid the “curse of dimensionality”. This framework suggests interesting implications about the role that machine learning may play in mathematics.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/bull/1820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/bull/1820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

神经网络在各个领域都取得了令人瞩目的成就,这就提出了一个问题:最优秀的人工智能系统以及人类智能的有效性究竟基于哪些基本原则?本视角认为,组成稀疏性,或组成函数具有 "少数 "组成函数的特性,即每个函数只依赖于一小部分输入,是成功学习架构的一个关键原则。令人惊讶的是,所有可高效图灵计算的函数都具有组成稀疏性表示。此外,同样稀疏的深度网络可以利用这一普遍特性来避免 "维度诅咒"。这一框架为机器学习在数学中可能扮演的角色提供了有趣的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compositional sparsity of learnable functions
Neural networks have demonstrated impressive success in various domains, raising the question of what fundamental principles underlie the effectiveness of the best AI systems and quite possibly of human intelligence. This perspective argues that compositional sparsity, or the property that a compositional function have “few” constituent functions, each depending on only a small subset of inputs, is a key principle underlying successful learning architectures. Surprisingly, all functions that are efficiently Turing computable have a compositional sparse representation. Furthermore, deep networks that are also sparse can exploit this general property to avoid the “curse of dimensionality”. This framework suggests interesting implications about the role that machine learning may play in mathematics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信