扎伦巴猜想的辐射边界

IF 0.8 3区 数学 Q2 MATHEMATICS
Nikita Shulga
{"title":"扎伦巴猜想的辐射边界","authors":"Nikita Shulga","doi":"10.1112/blms.13087","DOIUrl":null,"url":null,"abstract":"<p>Famous Zaremba's conjecture (1971) states that for each positive integer <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$q\\geqslant 2$</annotation>\n </semantics></math>, there exists a positive integer <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>a</mi>\n <mo>&lt;</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$1\\leqslant a &amp;lt;q$</annotation>\n </semantics></math>, coprime to <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>, such that if you expand a fraction <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>/</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$a/q$</annotation>\n </semantics></math> into a continued fraction <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>/</mo>\n <mi>q</mi>\n <mo>=</mo>\n <mo>[</mo>\n <msub>\n <mi>a</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>a</mi>\n <mi>n</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n <annotation>$a/q=[a_1,\\ldots,a_n]$</annotation>\n </semantics></math>, all of the coefficients <span></span><math>\n <semantics>\n <msub>\n <mi>a</mi>\n <mi>i</mi>\n </msub>\n <annotation>$a_i$</annotation>\n </semantics></math>’s are bounded by some absolute constant <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$\\mathfrak {k}$</annotation>\n </semantics></math>, independent of <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>. Zaremba conjectured that this should hold for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$\\mathfrak {k}=5$</annotation>\n </semantics></math>. In 1986, Niederreiter proved Zaremba's conjecture for numbers of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <msup>\n <mn>3</mn>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$q=2^n,3^n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$\\mathfrak {k}=3$</annotation>\n </semantics></math> and for <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <msup>\n <mn>5</mn>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$q=5^n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$\\mathfrak {k}=4$</annotation>\n </semantics></math>. In this paper, we prove that for each number <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≠</mo>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <msup>\n <mn>3</mn>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$q\\ne 2^n,3^n$</annotation>\n </semantics></math>, there exists <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$a$</annotation>\n </semantics></math>, coprime to <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>, such that all of the partial quotients in the continued fraction of <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>/</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$a/q$</annotation>\n </semantics></math> are bounded by <span></span><math>\n <semantics>\n <mrow>\n <mo>rad</mo>\n <mo>(</mo>\n <mi>q</mi>\n <mo>)</mo>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$ \\operatorname{rad}(q)-1$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mo>rad</mo>\n <mo>(</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{rad}(q)$</annotation>\n </semantics></math> is the radical of an integer number, that is, the product of all distinct prime numbers dividing <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>. In particular, this means that Zaremba's conjecture holds for numbers <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math> of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n <msup>\n <mn>3</mn>\n <mi>m</mi>\n </msup>\n <mo>,</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>∈</mo>\n <mi>N</mi>\n <mo>∪</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$q=2^n3^m, n,m\\in \\mathbb {N}\\cup \\lbrace 0\\rbrace$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$\\mathfrak {k}= 5$</annotation>\n </semantics></math>, generalizing Neiderreiter's result. Our result also improves upon the recent result by Moshchevitin, Murphy and Shkredov on numbers of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <msup>\n <mi>p</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$q=p^n$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> is an arbitrary prime and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> is sufficiently large.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2615-2624"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13087","citationCount":"0","resultStr":"{\"title\":\"Radical bound for Zaremba's conjecture\",\"authors\":\"Nikita Shulga\",\"doi\":\"10.1112/blms.13087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Famous Zaremba's conjecture (1971) states that for each positive integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$q\\\\geqslant 2$</annotation>\\n </semantics></math>, there exists a positive integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>a</mi>\\n <mo>&lt;</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation>$1\\\\leqslant a &amp;lt;q$</annotation>\\n </semantics></math>, coprime to <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>, such that if you expand a fraction <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>/</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation>$a/q$</annotation>\\n </semantics></math> into a continued fraction <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>/</mo>\\n <mi>q</mi>\\n <mo>=</mo>\\n <mo>[</mo>\\n <msub>\\n <mi>a</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>a</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$a/q=[a_1,\\\\ldots,a_n]$</annotation>\\n </semantics></math>, all of the coefficients <span></span><math>\\n <semantics>\\n <msub>\\n <mi>a</mi>\\n <mi>i</mi>\\n </msub>\\n <annotation>$a_i$</annotation>\\n </semantics></math>’s are bounded by some absolute constant <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$\\\\mathfrak {k}$</annotation>\\n </semantics></math>, independent of <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>. Zaremba conjectured that this should hold for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>5</mn>\\n </mrow>\\n <annotation>$\\\\mathfrak {k}=5$</annotation>\\n </semantics></math>. In 1986, Niederreiter proved Zaremba's conjecture for numbers of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mn>3</mn>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$q=2^n,3^n$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$\\\\mathfrak {k}=3$</annotation>\\n </semantics></math> and for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>5</mn>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$q=5^n$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$\\\\mathfrak {k}=4$</annotation>\\n </semantics></math>. In this paper, we prove that for each number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≠</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mn>3</mn>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$q\\\\ne 2^n,3^n$</annotation>\\n </semantics></math>, there exists <span></span><math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$a$</annotation>\\n </semantics></math>, coprime to <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>, such that all of the partial quotients in the continued fraction of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>/</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation>$a/q$</annotation>\\n </semantics></math> are bounded by <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>rad</mo>\\n <mo>(</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$ \\\\operatorname{rad}(q)-1$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>rad</mo>\\n <mo>(</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{rad}(q)$</annotation>\\n </semantics></math> is the radical of an integer number, that is, the product of all distinct prime numbers dividing <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>. In particular, this means that Zaremba's conjecture holds for numbers <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math> of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>n</mi>\\n </msup>\\n <msup>\\n <mn>3</mn>\\n <mi>m</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n <mo>∪</mo>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation>$q=2^n3^m, n,m\\\\in \\\\mathbb {N}\\\\cup \\\\lbrace 0\\\\rbrace$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>5</mn>\\n </mrow>\\n <annotation>$\\\\mathfrak {k}= 5$</annotation>\\n </semantics></math>, generalizing Neiderreiter's result. Our result also improves upon the recent result by Moshchevitin, Murphy and Shkredov on numbers of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <msup>\\n <mi>p</mi>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$q=p^n$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> is an arbitrary prime and <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> is sufficiently large.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2615-2624\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13087\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13087\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13087","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

著名的扎伦巴猜想(1971 年)指出,对于每个正整数 ,都存在一个正整数 ,与 ,共素数 ,使得如果把一个分数展开成一个续分数,所有的系数 's 都被某个绝对常数所限定,与 . 扎伦巴猜想,对于 .1986 年,Niederreiter 证明了 Zaremba 对形式为 和 的数的猜想。 在本文中,我们证明了对于每个数 ,都存在 ,与 ,共素,使得在 的续分数中的所有部分商都受约束于 ,其中 , 是整数的基数,即所有不同素数相除的乘积。特别是,这意味着扎伦巴的猜想对于以 , 形式存在的数成立,从而推广了奈德雷特的结果。我们的结果还改进了莫什切维京、墨菲和什克雷多夫最近关于形式为 ,其中为任意素数且足够大的数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radical bound for Zaremba's conjecture

Famous Zaremba's conjecture (1971) states that for each positive integer q 2 $q\geqslant 2$ , there exists a positive integer 1 a < q $1\leqslant a &lt;q$ , coprime to q $q$ , such that if you expand a fraction a / q $a/q$ into a continued fraction a / q = [ a 1 , , a n ] $a/q=[a_1,\ldots,a_n]$ , all of the coefficients a i $a_i$ ’s are bounded by some absolute constant k $\mathfrak {k}$ , independent of q $q$ . Zaremba conjectured that this should hold for k = 5 $\mathfrak {k}=5$ . In 1986, Niederreiter proved Zaremba's conjecture for numbers of the form q = 2 n , 3 n $q=2^n,3^n$ with k = 3 $\mathfrak {k}=3$ and for q = 5 n $q=5^n$ with k = 4 $\mathfrak {k}=4$ . In this paper, we prove that for each number q 2 n , 3 n $q\ne 2^n,3^n$ , there exists a $a$ , coprime to q $q$ , such that all of the partial quotients in the continued fraction of a / q $a/q$ are bounded by rad ( q ) 1 $ \operatorname{rad}(q)-1$ , where rad ( q ) $\operatorname{rad}(q)$ is the radical of an integer number, that is, the product of all distinct prime numbers dividing q $q$ . In particular, this means that Zaremba's conjecture holds for numbers q $q$ of the form q = 2 n 3 m , n , m N { 0 } $q=2^n3^m, n,m\in \mathbb {N}\cup \lbrace 0\rbrace$ with k = 5 $\mathfrak {k}= 5$ , generalizing Neiderreiter's result. Our result also improves upon the recent result by Moshchevitin, Murphy and Shkredov on numbers of the form q = p n $q=p^n$ , where p $p$ is an arbitrary prime and n $n$ is sufficiently large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信