{"title":"扎伦巴猜想的辐射边界","authors":"Nikita Shulga","doi":"10.1112/blms.13087","DOIUrl":null,"url":null,"abstract":"<p>Famous Zaremba's conjecture (1971) states that for each positive integer <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>⩾</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$q\\geqslant 2$</annotation>\n </semantics></math>, there exists a positive integer <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>a</mi>\n <mo><</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$1\\leqslant a &lt;q$</annotation>\n </semantics></math>, coprime to <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>, such that if you expand a fraction <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>/</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$a/q$</annotation>\n </semantics></math> into a continued fraction <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>/</mo>\n <mi>q</mi>\n <mo>=</mo>\n <mo>[</mo>\n <msub>\n <mi>a</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>a</mi>\n <mi>n</mi>\n </msub>\n <mo>]</mo>\n </mrow>\n <annotation>$a/q=[a_1,\\ldots,a_n]$</annotation>\n </semantics></math>, all of the coefficients <span></span><math>\n <semantics>\n <msub>\n <mi>a</mi>\n <mi>i</mi>\n </msub>\n <annotation>$a_i$</annotation>\n </semantics></math>’s are bounded by some absolute constant <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$\\mathfrak {k}$</annotation>\n </semantics></math>, independent of <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>. Zaremba conjectured that this should hold for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$\\mathfrak {k}=5$</annotation>\n </semantics></math>. In 1986, Niederreiter proved Zaremba's conjecture for numbers of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <msup>\n <mn>3</mn>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$q=2^n,3^n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$\\mathfrak {k}=3$</annotation>\n </semantics></math> and for <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <msup>\n <mn>5</mn>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$q=5^n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$\\mathfrak {k}=4$</annotation>\n </semantics></math>. In this paper, we prove that for each number <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≠</mo>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n <mo>,</mo>\n <msup>\n <mn>3</mn>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$q\\ne 2^n,3^n$</annotation>\n </semantics></math>, there exists <span></span><math>\n <semantics>\n <mi>a</mi>\n <annotation>$a$</annotation>\n </semantics></math>, coprime to <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>, such that all of the partial quotients in the continued fraction of <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mo>/</mo>\n <mi>q</mi>\n </mrow>\n <annotation>$a/q$</annotation>\n </semantics></math> are bounded by <span></span><math>\n <semantics>\n <mrow>\n <mo>rad</mo>\n <mo>(</mo>\n <mi>q</mi>\n <mo>)</mo>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$ \\operatorname{rad}(q)-1$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mo>rad</mo>\n <mo>(</mo>\n <mi>q</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{rad}(q)$</annotation>\n </semantics></math> is the radical of an integer number, that is, the product of all distinct prime numbers dividing <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>. In particular, this means that Zaremba's conjecture holds for numbers <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math> of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <msup>\n <mn>2</mn>\n <mi>n</mi>\n </msup>\n <msup>\n <mn>3</mn>\n <mi>m</mi>\n </msup>\n <mo>,</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>m</mi>\n <mo>∈</mo>\n <mi>N</mi>\n <mo>∪</mo>\n <mrow>\n <mo>{</mo>\n <mn>0</mn>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation>$q=2^n3^m, n,m\\in \\mathbb {N}\\cup \\lbrace 0\\rbrace$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>5</mn>\n </mrow>\n <annotation>$\\mathfrak {k}= 5$</annotation>\n </semantics></math>, generalizing Neiderreiter's result. Our result also improves upon the recent result by Moshchevitin, Murphy and Shkredov on numbers of the form <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <msup>\n <mi>p</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$q=p^n$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> is an arbitrary prime and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> is sufficiently large.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2615-2624"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13087","citationCount":"0","resultStr":"{\"title\":\"Radical bound for Zaremba's conjecture\",\"authors\":\"Nikita Shulga\",\"doi\":\"10.1112/blms.13087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Famous Zaremba's conjecture (1971) states that for each positive integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>⩾</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$q\\\\geqslant 2$</annotation>\\n </semantics></math>, there exists a positive integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>⩽</mo>\\n <mi>a</mi>\\n <mo><</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation>$1\\\\leqslant a &lt;q$</annotation>\\n </semantics></math>, coprime to <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>, such that if you expand a fraction <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>/</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation>$a/q$</annotation>\\n </semantics></math> into a continued fraction <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>/</mo>\\n <mi>q</mi>\\n <mo>=</mo>\\n <mo>[</mo>\\n <msub>\\n <mi>a</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>a</mi>\\n <mi>n</mi>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <annotation>$a/q=[a_1,\\\\ldots,a_n]$</annotation>\\n </semantics></math>, all of the coefficients <span></span><math>\\n <semantics>\\n <msub>\\n <mi>a</mi>\\n <mi>i</mi>\\n </msub>\\n <annotation>$a_i$</annotation>\\n </semantics></math>’s are bounded by some absolute constant <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$\\\\mathfrak {k}$</annotation>\\n </semantics></math>, independent of <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>. Zaremba conjectured that this should hold for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>5</mn>\\n </mrow>\\n <annotation>$\\\\mathfrak {k}=5$</annotation>\\n </semantics></math>. In 1986, Niederreiter proved Zaremba's conjecture for numbers of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mn>3</mn>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$q=2^n,3^n$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$\\\\mathfrak {k}=3$</annotation>\\n </semantics></math> and for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>5</mn>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$q=5^n$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation>$\\\\mathfrak {k}=4$</annotation>\\n </semantics></math>. In this paper, we prove that for each number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≠</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>n</mi>\\n </msup>\\n <mo>,</mo>\\n <msup>\\n <mn>3</mn>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$q\\\\ne 2^n,3^n$</annotation>\\n </semantics></math>, there exists <span></span><math>\\n <semantics>\\n <mi>a</mi>\\n <annotation>$a$</annotation>\\n </semantics></math>, coprime to <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>, such that all of the partial quotients in the continued fraction of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>a</mi>\\n <mo>/</mo>\\n <mi>q</mi>\\n </mrow>\\n <annotation>$a/q$</annotation>\\n </semantics></math> are bounded by <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>rad</mo>\\n <mo>(</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$ \\\\operatorname{rad}(q)-1$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>rad</mo>\\n <mo>(</mo>\\n <mi>q</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{rad}(q)$</annotation>\\n </semantics></math> is the radical of an integer number, that is, the product of all distinct prime numbers dividing <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math>. In particular, this means that Zaremba's conjecture holds for numbers <span></span><math>\\n <semantics>\\n <mi>q</mi>\\n <annotation>$q$</annotation>\\n </semantics></math> of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <msup>\\n <mn>2</mn>\\n <mi>n</mi>\\n </msup>\\n <msup>\\n <mn>3</mn>\\n <mi>m</mi>\\n </msup>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>m</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n <mo>∪</mo>\\n <mrow>\\n <mo>{</mo>\\n <mn>0</mn>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation>$q=2^n3^m, n,m\\\\in \\\\mathbb {N}\\\\cup \\\\lbrace 0\\\\rbrace$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>5</mn>\\n </mrow>\\n <annotation>$\\\\mathfrak {k}= 5$</annotation>\\n </semantics></math>, generalizing Neiderreiter's result. Our result also improves upon the recent result by Moshchevitin, Murphy and Shkredov on numbers of the form <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <msup>\\n <mi>p</mi>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$q=p^n$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> is an arbitrary prime and <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> is sufficiently large.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"56 8\",\"pages\":\"2615-2624\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.13087\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.13087\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13087","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Famous Zaremba's conjecture (1971) states that for each positive integer , there exists a positive integer , coprime to , such that if you expand a fraction into a continued fraction , all of the coefficients ’s are bounded by some absolute constant , independent of . Zaremba conjectured that this should hold for . In 1986, Niederreiter proved Zaremba's conjecture for numbers of the form with and for with . In this paper, we prove that for each number , there exists , coprime to , such that all of the partial quotients in the continued fraction of are bounded by , where is the radical of an integer number, that is, the product of all distinct prime numbers dividing . In particular, this means that Zaremba's conjecture holds for numbers of the form with , generalizing Neiderreiter's result. Our result also improves upon the recent result by Moshchevitin, Murphy and Shkredov on numbers of the form , where is an arbitrary prime and is sufficiently large.