J. Muñoz-Redondo, Francisco Juli á n Cuevas, José Carlos Montenegro, J. Ordóñez-Díaz, J. Moreno-Rojas
{"title":"集约化有机农业所用肥料的最新同位素数据库:蛋白质水解衍生物和螯合营养素案例研究","authors":"J. Muñoz-Redondo, Francisco Juli á n Cuevas, José Carlos Montenegro, J. Ordóñez-Díaz, J. Moreno-Rojas","doi":"10.3390/horticulturae10050523","DOIUrl":null,"url":null,"abstract":"The global demand for organic food products has rapidly increased over the last years, becoming an emerging niche market targeting the high-income segment. The higher retailing price for organic food products may increase the risk of fraudulent practices at the different stages of the food supply chain, and consequently, substantial control is needed. Currently, the authentication of organic food products, such as those of plant origin, remains a key challenge in analytical chemistry. While stable isotopes have emerged as a powerful tool for this purpose, most studies have focused on crops, missing the agricultural inputs used for fertilization that influence the isotopic values of the crops. In this study, we aimed to isotopically characterize commonly used fertilizers, soil conditioners, and micronutrient fertilizers in intensive organic agriculture in the largest organic production region in the world (Almería, Spain). Our goal was to clarify the limitations that nitrogen isotopic fingerprinting presents for the fertilizer input industry and to characterize the organic inputs. The conventional fertilizers analyzed in this study showed low δ15N values compared to their organic counterparts, except for some plant-based fertilizers, protein hydrolyzed fertilizers, and chelated nutrients. Both protein hydrolyzed fertilizers and micronutrient fertilizers presented a wide range of variability in their δ15N values, including some very low or even negative values, more similar to those of conventional fertilizers. The results of this study highlight the challenges of authenticating organic foods in agriculture when using nitrogen isotope analysis.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"109 16","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Updated Isotopic Database of Fertilizers Used in Intensive Organic Farming: A Case Study on Protein Hydrolyzed Derivatives and Chelated Nutrients\",\"authors\":\"J. Muñoz-Redondo, Francisco Juli á n Cuevas, José Carlos Montenegro, J. Ordóñez-Díaz, J. Moreno-Rojas\",\"doi\":\"10.3390/horticulturae10050523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global demand for organic food products has rapidly increased over the last years, becoming an emerging niche market targeting the high-income segment. The higher retailing price for organic food products may increase the risk of fraudulent practices at the different stages of the food supply chain, and consequently, substantial control is needed. Currently, the authentication of organic food products, such as those of plant origin, remains a key challenge in analytical chemistry. While stable isotopes have emerged as a powerful tool for this purpose, most studies have focused on crops, missing the agricultural inputs used for fertilization that influence the isotopic values of the crops. In this study, we aimed to isotopically characterize commonly used fertilizers, soil conditioners, and micronutrient fertilizers in intensive organic agriculture in the largest organic production region in the world (Almería, Spain). Our goal was to clarify the limitations that nitrogen isotopic fingerprinting presents for the fertilizer input industry and to characterize the organic inputs. The conventional fertilizers analyzed in this study showed low δ15N values compared to their organic counterparts, except for some plant-based fertilizers, protein hydrolyzed fertilizers, and chelated nutrients. Both protein hydrolyzed fertilizers and micronutrient fertilizers presented a wide range of variability in their δ15N values, including some very low or even negative values, more similar to those of conventional fertilizers. The results of this study highlight the challenges of authenticating organic foods in agriculture when using nitrogen isotope analysis.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"109 16\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10050523\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae10050523","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Updated Isotopic Database of Fertilizers Used in Intensive Organic Farming: A Case Study on Protein Hydrolyzed Derivatives and Chelated Nutrients
The global demand for organic food products has rapidly increased over the last years, becoming an emerging niche market targeting the high-income segment. The higher retailing price for organic food products may increase the risk of fraudulent practices at the different stages of the food supply chain, and consequently, substantial control is needed. Currently, the authentication of organic food products, such as those of plant origin, remains a key challenge in analytical chemistry. While stable isotopes have emerged as a powerful tool for this purpose, most studies have focused on crops, missing the agricultural inputs used for fertilization that influence the isotopic values of the crops. In this study, we aimed to isotopically characterize commonly used fertilizers, soil conditioners, and micronutrient fertilizers in intensive organic agriculture in the largest organic production region in the world (Almería, Spain). Our goal was to clarify the limitations that nitrogen isotopic fingerprinting presents for the fertilizer input industry and to characterize the organic inputs. The conventional fertilizers analyzed in this study showed low δ15N values compared to their organic counterparts, except for some plant-based fertilizers, protein hydrolyzed fertilizers, and chelated nutrients. Both protein hydrolyzed fertilizers and micronutrient fertilizers presented a wide range of variability in their δ15N values, including some very low or even negative values, more similar to those of conventional fertilizers. The results of this study highlight the challenges of authenticating organic foods in agriculture when using nitrogen isotope analysis.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico