随机监督网络用于涉及生物对流和非线性热辐射的具有达西-福克海默滑移流的 Eyring-Powell 纳米流体模型的数值处理

Z. Shah, Muhammad Asif Zahoor Raja, Muhammad Shoaib, I. Khan, A. Kiani
{"title":"随机监督网络用于涉及生物对流和非线性热辐射的具有达西-福克海默滑移流的 Eyring-Powell 纳米流体模型的数值处理","authors":"Z. Shah, Muhammad Asif Zahoor Raja, Muhammad Shoaib, I. Khan, A. Kiani","doi":"10.1142/s0217984924504001","DOIUrl":null,"url":null,"abstract":"The aim of this study is to estimate the solution of Eyring–Powell nanofluid model (EPNFM) with Darcy Forchheimer slip flow involving bioconvection and nonlinear thermal radiation by employing stupendous knacks of neural networks-based Bayesian computational intelligence (NNBCI). A dataset for the designed NNBCI is generated with Adam numerical procedure for sundry variations of EPNFM by use of several variants including slip constant, Schmidt number, mixed convection parameter, Prandtl number, and bioconvection Lewis parameter. Numerical computations of various physical parameters of interest on EPNFM are estimated with artificial intelligence-based NNBCI and compared with reference data values generated with Adam’s numerical procedure. The accuracy, efficacy, and convergence of the proposed NNBCI to successfully solve the EPNFM are endorsed through M.S.E, statistical instance distribution studies of error-histograms, and assessment of regression metric. The proposed dataset exhibits a close alignment with the reference dataset based on error analysis from level E[Formula: see text] to E[Formula: see text] authenticates the precision of the designed procedure NNBCI for solving EPNFMs. The executive and novel physical importance of parameters governing the flow, such as nanofluid velocity, temperature, and concentration profiles, are discussed. The observations imply that the presence of the slip constant, mixed convection parameter and Lewis number influences the velocity of the nanofluid. However, it is observed that temperature of the nanofluid declines for higher values of Prandl number while the concentration of nanofluid improves with increasing values of Schmidt number.","PeriodicalId":503716,"journal":{"name":"Modern Physics Letters B","volume":"109 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic supervised networks for numerical treatment of Eyring–Powell nanofluid model with Darcy Forchheimer slip flow involving bioconvection and nonlinear thermal radiation\",\"authors\":\"Z. Shah, Muhammad Asif Zahoor Raja, Muhammad Shoaib, I. Khan, A. Kiani\",\"doi\":\"10.1142/s0217984924504001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this study is to estimate the solution of Eyring–Powell nanofluid model (EPNFM) with Darcy Forchheimer slip flow involving bioconvection and nonlinear thermal radiation by employing stupendous knacks of neural networks-based Bayesian computational intelligence (NNBCI). A dataset for the designed NNBCI is generated with Adam numerical procedure for sundry variations of EPNFM by use of several variants including slip constant, Schmidt number, mixed convection parameter, Prandtl number, and bioconvection Lewis parameter. Numerical computations of various physical parameters of interest on EPNFM are estimated with artificial intelligence-based NNBCI and compared with reference data values generated with Adam’s numerical procedure. The accuracy, efficacy, and convergence of the proposed NNBCI to successfully solve the EPNFM are endorsed through M.S.E, statistical instance distribution studies of error-histograms, and assessment of regression metric. The proposed dataset exhibits a close alignment with the reference dataset based on error analysis from level E[Formula: see text] to E[Formula: see text] authenticates the precision of the designed procedure NNBCI for solving EPNFMs. The executive and novel physical importance of parameters governing the flow, such as nanofluid velocity, temperature, and concentration profiles, are discussed. The observations imply that the presence of the slip constant, mixed convection parameter and Lewis number influences the velocity of the nanofluid. However, it is observed that temperature of the nanofluid declines for higher values of Prandl number while the concentration of nanofluid improves with increasing values of Schmidt number.\",\"PeriodicalId\":503716,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"109 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924504001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217984924504001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是利用基于神经网络的贝叶斯计算智能(NNBCI)的高超技巧,估算涉及生物对流和非线性热辐射的达西-福克海默滑移流的艾林-鲍威尔纳米流体模型(EPNFM)的解。通过使用滑移常数、施密特数、混合对流参数、普朗特数和生物对流路易斯参数等几种变体,利用亚当数值程序为 EPNFM 的各种变体生成了设计 NNBCI 的数据集。利用基于人工智能的 NNBCI 估算了 EPNFM 上各种相关物理参数的数值计算结果,并与亚当数值计算程序生成的参考数据值进行了比较。通过 M.S.E、误差序列图的统计实例分布研究和回归指标评估,证明了所提出的 NNBCI 成功求解 EPNFM 的准确性、有效性和收敛性。根据从 E[公式:见正文]到 E[公式:见正文]级的误差分析,所提议的数据集与参考数据集显示出密切的一致性,这证明了所设计的 NNBCI 程序在求解 EPNFM 方面的精确性。讨论了纳米流体速度、温度和浓度分布等流动参数的执行和新的物理重要性。观察结果表明,滑移常数、混合对流参数和路易斯数的存在会影响纳米流体的速度。然而,观察结果表明,纳米流体的温度随着普兰德数值的增大而降低,而纳米流体的浓度则随着施密特数值的增大而提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic supervised networks for numerical treatment of Eyring–Powell nanofluid model with Darcy Forchheimer slip flow involving bioconvection and nonlinear thermal radiation
The aim of this study is to estimate the solution of Eyring–Powell nanofluid model (EPNFM) with Darcy Forchheimer slip flow involving bioconvection and nonlinear thermal radiation by employing stupendous knacks of neural networks-based Bayesian computational intelligence (NNBCI). A dataset for the designed NNBCI is generated with Adam numerical procedure for sundry variations of EPNFM by use of several variants including slip constant, Schmidt number, mixed convection parameter, Prandtl number, and bioconvection Lewis parameter. Numerical computations of various physical parameters of interest on EPNFM are estimated with artificial intelligence-based NNBCI and compared with reference data values generated with Adam’s numerical procedure. The accuracy, efficacy, and convergence of the proposed NNBCI to successfully solve the EPNFM are endorsed through M.S.E, statistical instance distribution studies of error-histograms, and assessment of regression metric. The proposed dataset exhibits a close alignment with the reference dataset based on error analysis from level E[Formula: see text] to E[Formula: see text] authenticates the precision of the designed procedure NNBCI for solving EPNFMs. The executive and novel physical importance of parameters governing the flow, such as nanofluid velocity, temperature, and concentration profiles, are discussed. The observations imply that the presence of the slip constant, mixed convection parameter and Lewis number influences the velocity of the nanofluid. However, it is observed that temperature of the nanofluid declines for higher values of Prandl number while the concentration of nanofluid improves with increasing values of Schmidt number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信