Huiyu Wang, Shutang Liu, Xiang Wu, Jie Sun, W. Qiao
{"title":"通过基于事件的混合脉冲控制器同步具有跳跃错配的分数延迟记忆神经网络","authors":"Huiyu Wang, Shutang Liu, Xiang Wu, Jie Sun, W. Qiao","doi":"10.3390/fractalfract8050297","DOIUrl":null,"url":null,"abstract":"This study investigates the asymptotic synchronization in fractional memristive neural networks of the Riemann–Liouville type, considering mixed time delays and jump mismatches. Addressing the challenges associated with discrepancies in the circuit switching speed and the accuracy of the memristor, this paper introduces an enhanced model that effectively navigates these complexities. We propose two novel event-based hybrid impulsive controllers, each characterized by unique triggering conditions. Utilizing advanced techniques in inequality and hybrid impulsive control, we establish the conditions necessary for achieving synchronization through innovative Lyapunov functions. Importantly, the developed controllers are theoretically optimized to minimize control costs, an essential consideration for their practical deployment. Finally, the effectiveness of our proposed approach is demonstrated through two illustrative simulation examples.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"117 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization of Fractional Delayed Memristive Neural Networks with Jump Mismatches via Event-Based Hybrid Impulsive Controller\",\"authors\":\"Huiyu Wang, Shutang Liu, Xiang Wu, Jie Sun, W. Qiao\",\"doi\":\"10.3390/fractalfract8050297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the asymptotic synchronization in fractional memristive neural networks of the Riemann–Liouville type, considering mixed time delays and jump mismatches. Addressing the challenges associated with discrepancies in the circuit switching speed and the accuracy of the memristor, this paper introduces an enhanced model that effectively navigates these complexities. We propose two novel event-based hybrid impulsive controllers, each characterized by unique triggering conditions. Utilizing advanced techniques in inequality and hybrid impulsive control, we establish the conditions necessary for achieving synchronization through innovative Lyapunov functions. Importantly, the developed controllers are theoretically optimized to minimize control costs, an essential consideration for their practical deployment. Finally, the effectiveness of our proposed approach is demonstrated through two illustrative simulation examples.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"117 46\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8050297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8050297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synchronization of Fractional Delayed Memristive Neural Networks with Jump Mismatches via Event-Based Hybrid Impulsive Controller
This study investigates the asymptotic synchronization in fractional memristive neural networks of the Riemann–Liouville type, considering mixed time delays and jump mismatches. Addressing the challenges associated with discrepancies in the circuit switching speed and the accuracy of the memristor, this paper introduces an enhanced model that effectively navigates these complexities. We propose two novel event-based hybrid impulsive controllers, each characterized by unique triggering conditions. Utilizing advanced techniques in inequality and hybrid impulsive control, we establish the conditions necessary for achieving synchronization through innovative Lyapunov functions. Importantly, the developed controllers are theoretically optimized to minimize control costs, an essential consideration for their practical deployment. Finally, the effectiveness of our proposed approach is demonstrated through two illustrative simulation examples.