通过神经网络设计非线性系统的自适应输出反馈控制系统

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhao Li, Nozomu Otakara, Nozomu Kato, Ikuro Mizumoto
{"title":"通过神经网络设计非线性系统的自适应输出反馈控制系统","authors":"Zhao Li,&nbsp;Nozomu Otakara,&nbsp;Nozomu Kato,&nbsp;Ikuro Mizumoto","doi":"10.1002/ecj.12446","DOIUrl":null,"url":null,"abstract":"<p>Adaptive output feedback control based on output feedback exponential passivity (OFEP) has a simple structure and strong robustness in regard to disturbances and system uncertainties. However, it is difficult for most nonlinear systems to satisfy the conditions of OFEP. Thus, the introduction of a suitable parallel feedforward compensator (PFC) to construct an OFEP-augmented system with the controlled system has been used, but the control output cannot achieve perfect tracking because of the output of the introduced PFC. As a solution, introducing a feedforward (FF) input to build a 2 degree of freedom (2-DOF) is a simple and effective way to solve this problem. In this paper, we propose the design schemes for suitable PFC and FF input of nonlinear systems via the use of neural networks (NN), respectively. Besides, to cope with possibly present input disturbances, we also provide a method to achieve disturbance compensation based on NN to reduce their interference. Finally, the effectiveness of all proposed design schemes is confirmed through numerical simulations.</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"107 2","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive output feedback control system design for nonlinear systems via neural networks\",\"authors\":\"Zhao Li,&nbsp;Nozomu Otakara,&nbsp;Nozomu Kato,&nbsp;Ikuro Mizumoto\",\"doi\":\"10.1002/ecj.12446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adaptive output feedback control based on output feedback exponential passivity (OFEP) has a simple structure and strong robustness in regard to disturbances and system uncertainties. However, it is difficult for most nonlinear systems to satisfy the conditions of OFEP. Thus, the introduction of a suitable parallel feedforward compensator (PFC) to construct an OFEP-augmented system with the controlled system has been used, but the control output cannot achieve perfect tracking because of the output of the introduced PFC. As a solution, introducing a feedforward (FF) input to build a 2 degree of freedom (2-DOF) is a simple and effective way to solve this problem. In this paper, we propose the design schemes for suitable PFC and FF input of nonlinear systems via the use of neural networks (NN), respectively. Besides, to cope with possibly present input disturbances, we also provide a method to achieve disturbance compensation based on NN to reduce their interference. Finally, the effectiveness of all proposed design schemes is confirmed through numerical simulations.</p>\",\"PeriodicalId\":50539,\"journal\":{\"name\":\"Electronics and Communications in Japan\",\"volume\":\"107 2\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12446\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12446","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于输出反馈指数被动性(OFEP)的自适应输出反馈控制结构简单,对干扰和系统不确定性具有很强的鲁棒性。然而,大多数非线性系统很难满足 OFEP 的条件。因此,有人采用引入合适的并联前馈补偿器(PFC)的方法,与受控系统一起构建 OFEP 增强系统,但由于引入的 PFC 的输出,控制输出无法实现完美跟踪。作为一种解决方案,引入前馈(FF)输入以构建 2 自由度(2-DOF)是解决这一问题的简单而有效的方法。本文通过使用神经网络(NN),分别提出了适合非线性系统的 PFC 和 FF 输入的设计方案。此外,为了应对可能存在的输入干扰,我们还提供了一种基于神经网络实现干扰补偿的方法,以减少干扰。最后,我们通过数值模拟证实了所有建议设计方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive output feedback control system design for nonlinear systems via neural networks

Adaptive output feedback control based on output feedback exponential passivity (OFEP) has a simple structure and strong robustness in regard to disturbances and system uncertainties. However, it is difficult for most nonlinear systems to satisfy the conditions of OFEP. Thus, the introduction of a suitable parallel feedforward compensator (PFC) to construct an OFEP-augmented system with the controlled system has been used, but the control output cannot achieve perfect tracking because of the output of the introduced PFC. As a solution, introducing a feedforward (FF) input to build a 2 degree of freedom (2-DOF) is a simple and effective way to solve this problem. In this paper, we propose the design schemes for suitable PFC and FF input of nonlinear systems via the use of neural networks (NN), respectively. Besides, to cope with possibly present input disturbances, we also provide a method to achieve disturbance compensation based on NN to reduce their interference. Finally, the effectiveness of all proposed design schemes is confirmed through numerical simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics and Communications in Japan
Electronics and Communications in Japan 工程技术-工程:电子与电气
CiteScore
0.60
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields: - Electronic theory and circuits, - Control theory, - Communications, - Cryptography, - Biomedical fields, - Surveillance, - Robotics, - Sensors and actuators, - Micromachines, - Image analysis and signal analysis, - New materials. For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信