18 个油茶基因型的花粉和花器形态及其系统意义

IF 3.1 3区 农林科学 Q1 HORTICULTURE
Qian Yin, Zhongfei Pan, Yanmin Li, H. Xiong, Joseph Masabni, Deyi Yuan, Fengmei Zou
{"title":"18 个油茶基因型的花粉和花器形态及其系统意义","authors":"Qian Yin, Zhongfei Pan, Yanmin Li, H. Xiong, Joseph Masabni, Deyi Yuan, Fengmei Zou","doi":"10.3390/horticulturae10050524","DOIUrl":null,"url":null,"abstract":"Oil-tea belongs to the Camellia genus, an important oil crop in China. However, oil-tea is taxonomically challenging due to its morphological variation, polyploidy, and interspecific hybridization. Therefore, the present study aimed to investigate the flower organs’ morphology and pollen micro-morphology of 18 oil-tea genotypes in detail and discussed their significance for oil-tea taxonomy. The quantitative parameters of flowers were measured using Vernier caliper measurements. Pollen morphology was observed and photographed using scanning electron microscopy (SEM). The results indicated that the flower size varied significantly among the tested oil-tea genotypes, with the corolla diameter ranging from 42.25 μm in C. meiocarpa ‘LP’ to 89.51 μm in C. oleifera ‘ASX09’. The pollen grains of oil-tea are monads and medium grade in pollen size. There were two types of polar views, including triangular or subcircular, with a polar axis length (P) ranging from 27.5 μm in C. oleifera ‘CY67’ to 59.04 μm in C. mairei (H. Lév.) Melch. var. lapidea (Y.C. Wu) Sealy. The equatorial views exhibited oblate, spherical, or oblong shapes, with an equatorial axis length (E) of 21.32 to 41.62 μm. The pollen exine sculpture was perforate, verrucate, and reticulate. The perforation lumina diameter (D) ranged from 0.29 μm in C. magniflora Chang to 1.22 μm in C. yuhsienensis Hu, and the perforation width (W) varied from 0.77 μm in C. osmantha to 1.40 μm in C. gauchowensis ‘HM349’, respectively. Qualitative clustering analysis (Q-type cluster) and principal component analysis (PCA) were conducted using eleven indexes of flower and pollen morphology, and the 18 oil-tea genotypes were classified into three categories. In addition, the correlation analysis showed that there was a significant correlation between pollen size and flower morphology or pollen exine sculpture. These results offer valuable information on the classification and identification of the 18 oil-tea germplasm resources.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pollen and Floral Organ Morphology of 18 Oil-Tea Genotypes and Its Systematic Significance\",\"authors\":\"Qian Yin, Zhongfei Pan, Yanmin Li, H. Xiong, Joseph Masabni, Deyi Yuan, Fengmei Zou\",\"doi\":\"10.3390/horticulturae10050524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oil-tea belongs to the Camellia genus, an important oil crop in China. However, oil-tea is taxonomically challenging due to its morphological variation, polyploidy, and interspecific hybridization. Therefore, the present study aimed to investigate the flower organs’ morphology and pollen micro-morphology of 18 oil-tea genotypes in detail and discussed their significance for oil-tea taxonomy. The quantitative parameters of flowers were measured using Vernier caliper measurements. Pollen morphology was observed and photographed using scanning electron microscopy (SEM). The results indicated that the flower size varied significantly among the tested oil-tea genotypes, with the corolla diameter ranging from 42.25 μm in C. meiocarpa ‘LP’ to 89.51 μm in C. oleifera ‘ASX09’. The pollen grains of oil-tea are monads and medium grade in pollen size. There were two types of polar views, including triangular or subcircular, with a polar axis length (P) ranging from 27.5 μm in C. oleifera ‘CY67’ to 59.04 μm in C. mairei (H. Lév.) Melch. var. lapidea (Y.C. Wu) Sealy. The equatorial views exhibited oblate, spherical, or oblong shapes, with an equatorial axis length (E) of 21.32 to 41.62 μm. The pollen exine sculpture was perforate, verrucate, and reticulate. The perforation lumina diameter (D) ranged from 0.29 μm in C. magniflora Chang to 1.22 μm in C. yuhsienensis Hu, and the perforation width (W) varied from 0.77 μm in C. osmantha to 1.40 μm in C. gauchowensis ‘HM349’, respectively. Qualitative clustering analysis (Q-type cluster) and principal component analysis (PCA) were conducted using eleven indexes of flower and pollen morphology, and the 18 oil-tea genotypes were classified into three categories. In addition, the correlation analysis showed that there was a significant correlation between pollen size and flower morphology or pollen exine sculpture. These results offer valuable information on the classification and identification of the 18 oil-tea germplasm resources.\",\"PeriodicalId\":13034,\"journal\":{\"name\":\"Horticulturae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10050524\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae10050524","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

油茶属于山茶属,是中国重要的油料作物。然而,由于油茶的形态变异、多倍体和种间杂交,油茶在分类学上具有挑战性。因此,本研究旨在详细研究 18 个油茶基因型的花器官形态和花粉微形态,并探讨其对油茶分类的意义。使用游标卡尺测量了花的数量参数。使用扫描电子显微镜(SEM)对花粉形态进行了观察和拍照。结果表明,受测油茶基因型的花朵大小差异显著,花冠直径从 C. meiocarpa 'LP' 的 42.25 μm 到 C. oleifera 'ASX09' 的 89.51 μm。油茶的花粉粒为单粒,花粉大小中等。极轴长度(P)从油茶'CY67'的 27.5 μm 到 C. mairei (H. Lév.) Melch.赤道视图呈扁球形、球形或长圆形,赤道轴长(E)为 21.32 至 41.62 μm。花粉外皮雕刻有穿孔、瘤状和网状。花粉外膜穿孔直径(D)从张玉仙(C. magniflora Chang)的 0.29 μm 到胡玉仙(C. yuhsienensis Hu)的 1.22 μm,穿孔宽度(W)从张玉仙(C. osmantha)的 0.77 μm 到胡玉仙(C. gauchowensis 'HM349')的 1.40 μm。利用花和花粉形态的 11 个指标进行定性聚类分析(Q 型聚类)和主成分分析(PCA),将 18 个油茶基因型分为三类。此外,相关分析表明,花粉大小与花朵形态或花粉外皮雕刻之间存在显著相关。这些结果为 18 种油茶种质资源的分类和鉴定提供了有价值的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pollen and Floral Organ Morphology of 18 Oil-Tea Genotypes and Its Systematic Significance
Oil-tea belongs to the Camellia genus, an important oil crop in China. However, oil-tea is taxonomically challenging due to its morphological variation, polyploidy, and interspecific hybridization. Therefore, the present study aimed to investigate the flower organs’ morphology and pollen micro-morphology of 18 oil-tea genotypes in detail and discussed their significance for oil-tea taxonomy. The quantitative parameters of flowers were measured using Vernier caliper measurements. Pollen morphology was observed and photographed using scanning electron microscopy (SEM). The results indicated that the flower size varied significantly among the tested oil-tea genotypes, with the corolla diameter ranging from 42.25 μm in C. meiocarpa ‘LP’ to 89.51 μm in C. oleifera ‘ASX09’. The pollen grains of oil-tea are monads and medium grade in pollen size. There were two types of polar views, including triangular or subcircular, with a polar axis length (P) ranging from 27.5 μm in C. oleifera ‘CY67’ to 59.04 μm in C. mairei (H. Lév.) Melch. var. lapidea (Y.C. Wu) Sealy. The equatorial views exhibited oblate, spherical, or oblong shapes, with an equatorial axis length (E) of 21.32 to 41.62 μm. The pollen exine sculpture was perforate, verrucate, and reticulate. The perforation lumina diameter (D) ranged from 0.29 μm in C. magniflora Chang to 1.22 μm in C. yuhsienensis Hu, and the perforation width (W) varied from 0.77 μm in C. osmantha to 1.40 μm in C. gauchowensis ‘HM349’, respectively. Qualitative clustering analysis (Q-type cluster) and principal component analysis (PCA) were conducted using eleven indexes of flower and pollen morphology, and the 18 oil-tea genotypes were classified into three categories. In addition, the correlation analysis showed that there was a significant correlation between pollen size and flower morphology or pollen exine sculpture. These results offer valuable information on the classification and identification of the 18 oil-tea germplasm resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horticulturae
Horticulturae HORTICULTURE-
CiteScore
3.50
自引率
19.40%
发文量
998
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信