同域毒蛙的防御性生物碱变异和适口性

IF 1.6 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Julia Albuquerque-Pinna, Adriana M. Jeckel, Daniel Y. M. Nakamura, Paulo Sérgio Bernarde, Sophie Kocheff, Ralph A. Saporito, Taran Grant
{"title":"同域毒蛙的防御性生物碱变异和适口性","authors":"Julia Albuquerque-Pinna,&nbsp;Adriana M. Jeckel,&nbsp;Daniel Y. M. Nakamura,&nbsp;Paulo Sérgio Bernarde,&nbsp;Sophie Kocheff,&nbsp;Ralph A. Saporito,&nbsp;Taran Grant","doi":"10.1007/s00049-024-00402-9","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical defense in poison frogs derives from lipophilic alkaloids sequestered from dietary arthropods. Alkaloid composition varies extensively among individuals, populations, and species. Numerous causes of intraspecific variation have been identified, but the causes of interspecific variation are less clear, with both intrinsic (e.g., mechanism of sequestration) and extrinsic (e.g., arthropod availability) explanations being possible. Sympatric species afford a unique opportunity to investigate the causes and consequences of interspecific variation in natural populations, since they are potentially exposed to the same arthropod prey and predators. We used gas chromatography–mass spectrometry to identify alkaloids from 36 individuals of six species and three genera of dendrobatid poison frogs (<i>Adelphobates, Ameerega</i>, and <i>Ranitomeya</i>) collected in three Amazonian localities. We then compared alkaloid composition, richness, and quantity among sympatric species and analyzed the variation in alkaloid composition among con- and heterospecific populations at the two nearest localities. We also performed arthropod palatability experiments to investigate the biological significance of differences in alkaloids among sympatric species. Sympatric species differed in alkaloid composition, richness, and quantity, and conspecific individuals from different localities shared more alkaloids than heterospecific individuals from the same locality, strongly suggesting that variation is due to intrinsic causes. All analyzed alkaloid secretions were unpalatable, but palatability scores did not differ for most sympatric species, despite significant differences in alkaloid composition, richness, and quantity. Our results provide insights into the causes and consequences of interspecific variation in alkaloid profiles, but additional data are required to identify specific intrinsic causes and predator responses.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 2","pages":"83 - 94"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defensive alkaloid variation and palatability in sympatric poison frogs\",\"authors\":\"Julia Albuquerque-Pinna,&nbsp;Adriana M. Jeckel,&nbsp;Daniel Y. M. Nakamura,&nbsp;Paulo Sérgio Bernarde,&nbsp;Sophie Kocheff,&nbsp;Ralph A. Saporito,&nbsp;Taran Grant\",\"doi\":\"10.1007/s00049-024-00402-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chemical defense in poison frogs derives from lipophilic alkaloids sequestered from dietary arthropods. Alkaloid composition varies extensively among individuals, populations, and species. Numerous causes of intraspecific variation have been identified, but the causes of interspecific variation are less clear, with both intrinsic (e.g., mechanism of sequestration) and extrinsic (e.g., arthropod availability) explanations being possible. Sympatric species afford a unique opportunity to investigate the causes and consequences of interspecific variation in natural populations, since they are potentially exposed to the same arthropod prey and predators. We used gas chromatography–mass spectrometry to identify alkaloids from 36 individuals of six species and three genera of dendrobatid poison frogs (<i>Adelphobates, Ameerega</i>, and <i>Ranitomeya</i>) collected in three Amazonian localities. We then compared alkaloid composition, richness, and quantity among sympatric species and analyzed the variation in alkaloid composition among con- and heterospecific populations at the two nearest localities. We also performed arthropod palatability experiments to investigate the biological significance of differences in alkaloids among sympatric species. Sympatric species differed in alkaloid composition, richness, and quantity, and conspecific individuals from different localities shared more alkaloids than heterospecific individuals from the same locality, strongly suggesting that variation is due to intrinsic causes. All analyzed alkaloid secretions were unpalatable, but palatability scores did not differ for most sympatric species, despite significant differences in alkaloid composition, richness, and quantity. Our results provide insights into the causes and consequences of interspecific variation in alkaloid profiles, but additional data are required to identify specific intrinsic causes and predator responses.</p></div>\",\"PeriodicalId\":515,\"journal\":{\"name\":\"Chemoecology\",\"volume\":\"34 2\",\"pages\":\"83 - 94\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemoecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-024-00402-9\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-024-00402-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

毒蛙的化学防御能力来自于从食物节肢动物中螯合的亲脂生物碱。生物碱的组成在个体、种群和物种之间存在很大差异。种内变异的原因已被发现很多,但种间变异的原因却不太清楚,有可能是内在原因(如固着机制),也有可能是外在原因(如节肢动物的可获得性)。同域物种为研究自然种群中种间变异的原因和后果提供了一个独特的机会,因为它们可能面临相同的节肢动物猎物和捕食者。我们使用气相色谱-质谱法鉴定了在亚马逊河流域三个地方收集到的六个物种和三个属的石斛毒蛙(Adelphobates、Ameerega和Ranitomeya)36只个体的生物碱。然后,我们比较了同域物种之间的生物碱成分、丰富度和数量,并分析了两个最近地点的同种和异种种群之间生物碱成分的变化。我们还进行了节肢动物适口性实验,以研究同域物种间生物碱差异的生物学意义。同域物种在生物碱的组成、丰富度和数量上存在差异,来自不同地点的同种个体比来自同一地点的异种个体共享更多的生物碱,这有力地表明差异是由内在原因造成的。所有分析的生物碱分泌物都是难食性的,但尽管生物碱的成分、丰富度和数量存在显著差异,但大多数同域物种的难食性评分并无不同。我们的研究结果为了解生物碱特征种间差异的原因和后果提供了见解,但还需要更多数据来确定具体的内在原因和捕食者的反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Defensive alkaloid variation and palatability in sympatric poison frogs

Defensive alkaloid variation and palatability in sympatric poison frogs

Defensive alkaloid variation and palatability in sympatric poison frogs

Chemical defense in poison frogs derives from lipophilic alkaloids sequestered from dietary arthropods. Alkaloid composition varies extensively among individuals, populations, and species. Numerous causes of intraspecific variation have been identified, but the causes of interspecific variation are less clear, with both intrinsic (e.g., mechanism of sequestration) and extrinsic (e.g., arthropod availability) explanations being possible. Sympatric species afford a unique opportunity to investigate the causes and consequences of interspecific variation in natural populations, since they are potentially exposed to the same arthropod prey and predators. We used gas chromatography–mass spectrometry to identify alkaloids from 36 individuals of six species and three genera of dendrobatid poison frogs (Adelphobates, Ameerega, and Ranitomeya) collected in three Amazonian localities. We then compared alkaloid composition, richness, and quantity among sympatric species and analyzed the variation in alkaloid composition among con- and heterospecific populations at the two nearest localities. We also performed arthropod palatability experiments to investigate the biological significance of differences in alkaloids among sympatric species. Sympatric species differed in alkaloid composition, richness, and quantity, and conspecific individuals from different localities shared more alkaloids than heterospecific individuals from the same locality, strongly suggesting that variation is due to intrinsic causes. All analyzed alkaloid secretions were unpalatable, but palatability scores did not differ for most sympatric species, despite significant differences in alkaloid composition, richness, and quantity. Our results provide insights into the causes and consequences of interspecific variation in alkaloid profiles, but additional data are required to identify specific intrinsic causes and predator responses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemoecology
Chemoecology 环境科学-生化与分子生物学
CiteScore
4.20
自引率
0.00%
发文量
11
审稿时长
>36 weeks
期刊介绍: It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信