记忆晶体管中丝状和非丝状开关共存的痛觉感受器增强型尖峰计时可塑性

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dongyeol Ju, Jungwoo Lee, Sungjun Kim
{"title":"记忆晶体管中丝状和非丝状开关共存的痛觉感受器增强型尖峰计时可塑性","authors":"Dongyeol Ju,&nbsp;Jungwoo Lee,&nbsp;Sungjun Kim","doi":"10.1002/admt.202400440","DOIUrl":null,"url":null,"abstract":"<p>In the era of big data, traditional computing architectures face limitations in handling vast amounts of data owing to the separate processing and memory units, thus causing bottlenecks and high-energy consumption. Inspired by the human brain's information exchange mechanism, neuromorphic computing offers a promising solution. Resistive random access memory devices, particularly those with bilayer structures like Pt/TaO<sub>x</sub>/TiO<sub>x</sub>/TiN, show potential for neuromorphic computing owing to their simple design, low-power consumption, and compatibility with existing technology. This study investigates the synaptic applications of Pt/TaO<sub>x</sub>/TiO<sub>x</sub>/TiN devices for neuromorphic computing. The unique coexistence of nonfilamentary and filamentary switching in the Pt/TaO<sub>x</sub>/TiO<sub>x</sub>/TiN device enables the realization of reservoir computing and the functions of artificial nociceptors and synapses. Additionally, the linkage between artificial nociceptors and synapses is examined based on injury-enhanced spike-time-dependent plasticity paradigms. This study underscores the Pt/TaO<sub>x</sub>/TiO<sub>x</sub>/TiN device's potential in neuromorphic computing, providing a framework for simulating nociceptors, synapses, and learning principles.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nociceptor-Enhanced Spike-Timing-Dependent Plasticity in Memristor with Coexistence of Filamentary and Non-Filamentary Switching\",\"authors\":\"Dongyeol Ju,&nbsp;Jungwoo Lee,&nbsp;Sungjun Kim\",\"doi\":\"10.1002/admt.202400440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the era of big data, traditional computing architectures face limitations in handling vast amounts of data owing to the separate processing and memory units, thus causing bottlenecks and high-energy consumption. Inspired by the human brain's information exchange mechanism, neuromorphic computing offers a promising solution. Resistive random access memory devices, particularly those with bilayer structures like Pt/TaO<sub>x</sub>/TiO<sub>x</sub>/TiN, show potential for neuromorphic computing owing to their simple design, low-power consumption, and compatibility with existing technology. This study investigates the synaptic applications of Pt/TaO<sub>x</sub>/TiO<sub>x</sub>/TiN devices for neuromorphic computing. The unique coexistence of nonfilamentary and filamentary switching in the Pt/TaO<sub>x</sub>/TiO<sub>x</sub>/TiN device enables the realization of reservoir computing and the functions of artificial nociceptors and synapses. Additionally, the linkage between artificial nociceptors and synapses is examined based on injury-enhanced spike-time-dependent plasticity paradigms. This study underscores the Pt/TaO<sub>x</sub>/TiO<sub>x</sub>/TiN device's potential in neuromorphic computing, providing a framework for simulating nociceptors, synapses, and learning principles.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400440\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202400440","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在大数据时代,传统计算架构由于处理单元和内存单元分离,在处理海量数据时受到限制,从而造成瓶颈和高能耗。受人脑信息交换机制的启发,神经形态计算提供了一种前景广阔的解决方案。电阻式随机存取存储器件,尤其是具有双层结构的器件,如 Pt/TaOx/TiOx/TiN 等,因其设计简单、功耗低以及与现有技术的兼容性,显示出神经形态计算的潜力。本研究探讨了 Pt/TaOx/TiOx/TiN 器件在神经形态计算中的突触应用。Pt/TaOx/TiOx/TiN 器件中独特的非丝状和丝状开关共存的特性实现了存储计算以及人工神经感受器和突触的功能。此外,该研究还基于损伤增强的尖峰时间依赖性可塑性范式,研究了人工痛觉感受器和突触之间的联系。这项研究强调了 Pt/TaOx/TiOx/TiN 器件在神经形态计算方面的潜力,为模拟痛觉感受器、突触和学习原理提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nociceptor-Enhanced Spike-Timing-Dependent Plasticity in Memristor with Coexistence of Filamentary and Non-Filamentary Switching

Nociceptor-Enhanced Spike-Timing-Dependent Plasticity in Memristor with Coexistence of Filamentary and Non-Filamentary Switching

In the era of big data, traditional computing architectures face limitations in handling vast amounts of data owing to the separate processing and memory units, thus causing bottlenecks and high-energy consumption. Inspired by the human brain's information exchange mechanism, neuromorphic computing offers a promising solution. Resistive random access memory devices, particularly those with bilayer structures like Pt/TaOx/TiOx/TiN, show potential for neuromorphic computing owing to their simple design, low-power consumption, and compatibility with existing technology. This study investigates the synaptic applications of Pt/TaOx/TiOx/TiN devices for neuromorphic computing. The unique coexistence of nonfilamentary and filamentary switching in the Pt/TaOx/TiOx/TiN device enables the realization of reservoir computing and the functions of artificial nociceptors and synapses. Additionally, the linkage between artificial nociceptors and synapses is examined based on injury-enhanced spike-time-dependent plasticity paradigms. This study underscores the Pt/TaOx/TiOx/TiN device's potential in neuromorphic computing, providing a framework for simulating nociceptors, synapses, and learning principles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信