{"title":"利用有限元模拟和模态测试对拖曳滑行条件下的商用飞机机鼻起落架进行结构强度分析和优化","authors":"Qiwei Lin, Chang Yang, Yuhao Bai, Jiahao Qin","doi":"10.3390/aerospace11050414","DOIUrl":null,"url":null,"abstract":"In the field of civil aviation, the nose landing gear is a critical component that is prone to damage during taxiing. With the advent of new technologies such as towing taxi-out and hub motors, the nose landing gear faces increasingly complex operational environments, thereby imposing higher performance demands. Ensuring the structural safety of the nose landing gear is fundamental for the successful application of these technologies. However, current research on aircraft nose landing gear under these new conditions is somewhat lacking, particularly in terms of reliable analysis models for real-world scenarios. This study focuses on a typical Class C aircraft, specifically the B-727 model, for which a finite element model of the nose landing gear is developed. Modal testing of the aircraft’s nose landing gear is conducted using the impact hammer method, and the results are compared with those from the simulations. The experimental data indicate that the error range for the first seven natural frequencies is between 0.23% and 9.27%, confirming the high accuracy of the developed landing gear model. Furthermore, with towing taxi-out as the primary scenario, a dynamic model of the aircraft towing system is established, and an analysis on the structural strength and topological optimization of the nose landing gear under various conditions, including high speeds and heavy loads, is performed. The results show that the developed model can effectively support the analysis and prediction of the mechanical behavior of the nose landing gear. Under high-speed, heavy-load conditions, the nose landing gear experiences significantly increased loads, with the maximum deformation primarily occurring at the lower section of the shock strut’s outer cylinder. However, no damage occurred. Additionally, under these conditions, an optimized structural design for the landing gear was identified, which, while ensuring structural strength, achieves a 22.32% reduction in the mass of the outer cylinder, also ensuring safety in towing taxi-out conditions.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Strength Analysis and Optimization of Commercial Aircraft Nose Landing Gear under Towing Taxi-Out Conditions Using Finite Element Simulation and Modal Testing\",\"authors\":\"Qiwei Lin, Chang Yang, Yuhao Bai, Jiahao Qin\",\"doi\":\"10.3390/aerospace11050414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of civil aviation, the nose landing gear is a critical component that is prone to damage during taxiing. With the advent of new technologies such as towing taxi-out and hub motors, the nose landing gear faces increasingly complex operational environments, thereby imposing higher performance demands. Ensuring the structural safety of the nose landing gear is fundamental for the successful application of these technologies. However, current research on aircraft nose landing gear under these new conditions is somewhat lacking, particularly in terms of reliable analysis models for real-world scenarios. This study focuses on a typical Class C aircraft, specifically the B-727 model, for which a finite element model of the nose landing gear is developed. Modal testing of the aircraft’s nose landing gear is conducted using the impact hammer method, and the results are compared with those from the simulations. The experimental data indicate that the error range for the first seven natural frequencies is between 0.23% and 9.27%, confirming the high accuracy of the developed landing gear model. Furthermore, with towing taxi-out as the primary scenario, a dynamic model of the aircraft towing system is established, and an analysis on the structural strength and topological optimization of the nose landing gear under various conditions, including high speeds and heavy loads, is performed. The results show that the developed model can effectively support the analysis and prediction of the mechanical behavior of the nose landing gear. Under high-speed, heavy-load conditions, the nose landing gear experiences significantly increased loads, with the maximum deformation primarily occurring at the lower section of the shock strut’s outer cylinder. However, no damage occurred. Additionally, under these conditions, an optimized structural design for the landing gear was identified, which, while ensuring structural strength, achieves a 22.32% reduction in the mass of the outer cylinder, also ensuring safety in towing taxi-out conditions.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11050414\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050414","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
摘要
在民用航空领域,机头起落架是滑行过程中容易损坏的关键部件。随着牵引滑出和轮毂电机等新技术的出现,机头起落架面临着越来越复杂的运行环境,从而提出了更高的性能要求。确保机头起落架的结构安全是成功应用这些技术的基础。然而,目前对这些新条件下飞机前起落架的研究还略显不足,特别是在针对实际场景的可靠分析模型方面。本研究侧重于典型的 C 级飞机,特别是 B-727 机型,为此开发了机头起落架的有限元模型。采用冲击锤法对飞机前起落架进行了模态测试,并将测试结果与模拟结果进行了比较。实验数据表明,前七个固有频率的误差范围在 0.23% 到 9.27% 之间,证实了所开发的起落架模型具有很高的精度。此外,以拖曳滑出为主要场景,建立了飞机拖曳系统的动态模型,并对高速和重载等各种条件下的机头起落架结构强度和拓扑优化进行了分析。结果表明,所建立的模型可以有效地支持对机头起落架力学行为的分析和预测。在高速、重载条件下,机头起落架承受的载荷显著增加,最大变形主要发生在减震支柱外筒的下部。但是,没有发生损坏。此外,在这些条件下,还确定了起落架的优化结构设计,在确保结构强度的同时,将外筒的质量减少了 22.32%,也确保了拖曳滑出条件下的安全性。
Structural Strength Analysis and Optimization of Commercial Aircraft Nose Landing Gear under Towing Taxi-Out Conditions Using Finite Element Simulation and Modal Testing
In the field of civil aviation, the nose landing gear is a critical component that is prone to damage during taxiing. With the advent of new technologies such as towing taxi-out and hub motors, the nose landing gear faces increasingly complex operational environments, thereby imposing higher performance demands. Ensuring the structural safety of the nose landing gear is fundamental for the successful application of these technologies. However, current research on aircraft nose landing gear under these new conditions is somewhat lacking, particularly in terms of reliable analysis models for real-world scenarios. This study focuses on a typical Class C aircraft, specifically the B-727 model, for which a finite element model of the nose landing gear is developed. Modal testing of the aircraft’s nose landing gear is conducted using the impact hammer method, and the results are compared with those from the simulations. The experimental data indicate that the error range for the first seven natural frequencies is between 0.23% and 9.27%, confirming the high accuracy of the developed landing gear model. Furthermore, with towing taxi-out as the primary scenario, a dynamic model of the aircraft towing system is established, and an analysis on the structural strength and topological optimization of the nose landing gear under various conditions, including high speeds and heavy loads, is performed. The results show that the developed model can effectively support the analysis and prediction of the mechanical behavior of the nose landing gear. Under high-speed, heavy-load conditions, the nose landing gear experiences significantly increased loads, with the maximum deformation primarily occurring at the lower section of the shock strut’s outer cylinder. However, no damage occurred. Additionally, under these conditions, an optimized structural design for the landing gear was identified, which, while ensuring structural strength, achieves a 22.32% reduction in the mass of the outer cylinder, also ensuring safety in towing taxi-out conditions.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.