D. B. Walls, D. Banks, Y. Kremer, A. J. Boyce, N. M. Burnside
{"title":"矿井水地热能应用最佳选址的地理信息系统分析:苏格兰矿区案例研究","authors":"D. B. Walls, D. Banks, Y. Kremer, A. J. Boyce, N. M. Burnside","doi":"10.1144/qjegh2023-050","DOIUrl":null,"url":null,"abstract":"\n Water within flooded coal mines can be abstracted via boreholes or shafts, where heat can be extracted from (or rejected to) it to satisfy surface heating (or cooling) demands. Following use, water can be reinjected to the mine workings, or discharged to a surface water receptor. Four criteria have been applied, using ArcGIS, to datasets describing mine workings and mine water below the Midland Valley of Scotland, to provide an initial screening tool for suitability for mine water geothermal energy exploitation. The criteria are: (i) presence of two or more worked coal seams below site, (ii) absence of potentially unstable shallow (<30 m) workings, (iii) depth to mine water piezometric head <60 m, (iv) depth of coal mine workings <250 m. The result is the Mine Water Geothermal Resource Atlas for Scotland (MiRAS). MiRAS suggests that a total area of 370 km\n 2\n is “optimal” for mine water geothermal development across 19 local authority areas, with greatest coverage in North Lanarkshire. This result should not be taken to suggest that mine water geothermal potential does not exist at locations outside the identified “optimal” footprint. The MiRAS does not preclude the necessity for specialist engineering and geological input during full feasibility study.\n \n \n Thematic collection:\n This article is part of the Mine Water Energy collection available at:\n https://www.lyellcollection.org/topic/collections/mine-water-energy\n \n \n Supplementary material:\n https://doi.org/10.6084/m9.figshare.c.7235866\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"96 10","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GIS analysis for the selection of optimal sites for mine water geothermal energy application: a case study of Scotland's mining regions\",\"authors\":\"D. B. Walls, D. Banks, Y. Kremer, A. J. Boyce, N. M. Burnside\",\"doi\":\"10.1144/qjegh2023-050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Water within flooded coal mines can be abstracted via boreholes or shafts, where heat can be extracted from (or rejected to) it to satisfy surface heating (or cooling) demands. Following use, water can be reinjected to the mine workings, or discharged to a surface water receptor. Four criteria have been applied, using ArcGIS, to datasets describing mine workings and mine water below the Midland Valley of Scotland, to provide an initial screening tool for suitability for mine water geothermal energy exploitation. The criteria are: (i) presence of two or more worked coal seams below site, (ii) absence of potentially unstable shallow (<30 m) workings, (iii) depth to mine water piezometric head <60 m, (iv) depth of coal mine workings <250 m. The result is the Mine Water Geothermal Resource Atlas for Scotland (MiRAS). MiRAS suggests that a total area of 370 km\\n 2\\n is “optimal” for mine water geothermal development across 19 local authority areas, with greatest coverage in North Lanarkshire. This result should not be taken to suggest that mine water geothermal potential does not exist at locations outside the identified “optimal” footprint. The MiRAS does not preclude the necessity for specialist engineering and geological input during full feasibility study.\\n \\n \\n Thematic collection:\\n This article is part of the Mine Water Energy collection available at:\\n https://www.lyellcollection.org/topic/collections/mine-water-energy\\n \\n \\n Supplementary material:\\n https://doi.org/10.6084/m9.figshare.c.7235866\\n\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"96 10\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/qjegh2023-050\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2023-050","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
GIS analysis for the selection of optimal sites for mine water geothermal energy application: a case study of Scotland's mining regions
Water within flooded coal mines can be abstracted via boreholes or shafts, where heat can be extracted from (or rejected to) it to satisfy surface heating (or cooling) demands. Following use, water can be reinjected to the mine workings, or discharged to a surface water receptor. Four criteria have been applied, using ArcGIS, to datasets describing mine workings and mine water below the Midland Valley of Scotland, to provide an initial screening tool for suitability for mine water geothermal energy exploitation. The criteria are: (i) presence of two or more worked coal seams below site, (ii) absence of potentially unstable shallow (<30 m) workings, (iii) depth to mine water piezometric head <60 m, (iv) depth of coal mine workings <250 m. The result is the Mine Water Geothermal Resource Atlas for Scotland (MiRAS). MiRAS suggests that a total area of 370 km
2
is “optimal” for mine water geothermal development across 19 local authority areas, with greatest coverage in North Lanarkshire. This result should not be taken to suggest that mine water geothermal potential does not exist at locations outside the identified “optimal” footprint. The MiRAS does not preclude the necessity for specialist engineering and geological input during full feasibility study.
Thematic collection:
This article is part of the Mine Water Energy collection available at:
https://www.lyellcollection.org/topic/collections/mine-water-energy
Supplementary material:
https://doi.org/10.6084/m9.figshare.c.7235866
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.