{"title":"探讨震源和改进方法对隧道地震预测的影响","authors":"Xinglin Lu, Wei Wang, Chao Yang, Xuquan Hu, Xian Liao, Zhihong Fu","doi":"10.2113/2024/lithosphere_2023_334","DOIUrl":null,"url":null,"abstract":"\n Tunnel seismic advanced prediction method is essential for detecting abnormal bodies ahead of the tunnel face and minimizing risks during tunnel construction. Selecting the seismic source plays a crucial role in influencing the precision and effectiveness of data acquisition. At present, tunnel seismic data is usually collected using explosive and sledgehammer sources. Nevertheless, the various sources are located in different positions within the tunnel excavation zone, resulting in distinct characteristics observed on the surface and reflected waves in the acquired tunnel seismic data. The explosive source has minimal surface wave interference, but it is expensive. However, the sledgehammer source is economical yet plagued by inadequate energy and substantial surface wave disruption. Regrettably, there is a lack of research on seismic sources in tunnels, which impairs the precise interpretation of forecasting conclusions from these sources. This paper seeks to investigate how various sources impact tunnel seismic prediction and suggests a new method that integrates data acquisition and processing from these sources. The explosive source is used once, while the sledgehammer source is used 24 times. Cross-correlation calculations are conducted to enhance the resolution of sledgehammer source data, reducing surface wave interference, based on seismic data obtained from the explosive source. Extensive numerical simulations and tunnel experiments support the validity of this method, highlighting its potential to lower data acquisition expenses and enhance tunnel seismic prediction accuracy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"51 4","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Influence of Seismic Source and Improvement Methods on Tunnel Seismic Prediction\",\"authors\":\"Xinglin Lu, Wei Wang, Chao Yang, Xuquan Hu, Xian Liao, Zhihong Fu\",\"doi\":\"10.2113/2024/lithosphere_2023_334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Tunnel seismic advanced prediction method is essential for detecting abnormal bodies ahead of the tunnel face and minimizing risks during tunnel construction. Selecting the seismic source plays a crucial role in influencing the precision and effectiveness of data acquisition. At present, tunnel seismic data is usually collected using explosive and sledgehammer sources. Nevertheless, the various sources are located in different positions within the tunnel excavation zone, resulting in distinct characteristics observed on the surface and reflected waves in the acquired tunnel seismic data. The explosive source has minimal surface wave interference, but it is expensive. However, the sledgehammer source is economical yet plagued by inadequate energy and substantial surface wave disruption. Regrettably, there is a lack of research on seismic sources in tunnels, which impairs the precise interpretation of forecasting conclusions from these sources. This paper seeks to investigate how various sources impact tunnel seismic prediction and suggests a new method that integrates data acquisition and processing from these sources. The explosive source is used once, while the sledgehammer source is used 24 times. Cross-correlation calculations are conducted to enhance the resolution of sledgehammer source data, reducing surface wave interference, based on seismic data obtained from the explosive source. Extensive numerical simulations and tunnel experiments support the validity of this method, highlighting its potential to lower data acquisition expenses and enhance tunnel seismic prediction accuracy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"51 4\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/2024/lithosphere_2023_334\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/2024/lithosphere_2023_334","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the Influence of Seismic Source and Improvement Methods on Tunnel Seismic Prediction
Tunnel seismic advanced prediction method is essential for detecting abnormal bodies ahead of the tunnel face and minimizing risks during tunnel construction. Selecting the seismic source plays a crucial role in influencing the precision and effectiveness of data acquisition. At present, tunnel seismic data is usually collected using explosive and sledgehammer sources. Nevertheless, the various sources are located in different positions within the tunnel excavation zone, resulting in distinct characteristics observed on the surface and reflected waves in the acquired tunnel seismic data. The explosive source has minimal surface wave interference, but it is expensive. However, the sledgehammer source is economical yet plagued by inadequate energy and substantial surface wave disruption. Regrettably, there is a lack of research on seismic sources in tunnels, which impairs the precise interpretation of forecasting conclusions from these sources. This paper seeks to investigate how various sources impact tunnel seismic prediction and suggests a new method that integrates data acquisition and processing from these sources. The explosive source is used once, while the sledgehammer source is used 24 times. Cross-correlation calculations are conducted to enhance the resolution of sledgehammer source data, reducing surface wave interference, based on seismic data obtained from the explosive source. Extensive numerical simulations and tunnel experiments support the validity of this method, highlighting its potential to lower data acquisition expenses and enhance tunnel seismic prediction accuracy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.