哈萨克斯坦油田的改性沥青材料

IF 2 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Guzaliya Faritovna Sagitova, Nurzhan Bauyrzhanovich Ainabekov, Nazarbek Mukhaddasuly Daurenbek, Dina Duisenbekkyzy Assylbekova, Ainur Slambekovna Sadyrbayeva, Aliya Erkegulovna Bitemirova, Gulchekhra Abdyrakhmanovna Takibayeva
{"title":"哈萨克斯坦油田的改性沥青材料","authors":"Guzaliya Faritovna Sagitova,&nbsp;Nurzhan Bauyrzhanovich Ainabekov,&nbsp;Nazarbek Mukhaddasuly Daurenbek,&nbsp;Dina Duisenbekkyzy Assylbekova,&nbsp;Ainur Slambekovna Sadyrbayeva,&nbsp;Aliya Erkegulovna Bitemirova,&nbsp;Gulchekhra Abdyrakhmanovna Takibayeva","doi":"10.1155/2024/8078021","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The oil bitumen BND 90/130, produced at the “LLP SP Caspi Bitum” with the modifier, which consists of copolymer of ethylene with butyl acrylate and glycidyl methacrylate taken in an amount of 0.5–1.6 wt%, and the tire reclaim (4–20 wt%), which is the destructate of mesh elastomers of different chemical nature, was modified; possibility of using the developed bitumen-elastomer binders in road asphalt concrete was justified. Modification of bitumen with a copolymer of ethylene with butyl acrylate and glycidyl methacrylate leads to an improvement in the properties of road bitumen: the softening point, hardness, deformability at low temperatures, elasticity, and adhesion to metal and mineral filler increase. It was shown that ethylene with butyl acrylate and glycidyl methacrylate chemically interacts with the functional groups of bitumen asphaltenes through the epoxy group of glycidyl methacrylate. Analysis of the spectra and group composition indicates an increased content of high molecular weight asphaltenes in the modified bitumen with a slight increase in structuring resins. It has been established that bitumen modified with rubber crumbs of 0.6–1.0 mm in size has high elasticity. The most effective composition of a bitumen-regenerated composite material based on tire reclaim has been determined. In terms of the totality of physicochemical and operational characteristics and comparative cost, the most acceptable is the bitumen-regenerated composition (with a regenerate content of 20%) and is superior in the complex of properties to bitumen modified with an optimal content of ethylene with butyl acrylate and glycidyl methacrylate (1.6%). The technology for modifying bitumen with tire reclaim is less time-consuming, more economically profitable, and environmentally effective, since it utilizes large-tonnage waste of worn-out tires. The resulting bitumen-polymer compositions have a high positive set of properties: softening point, hardness, elasticity, frost resistance, and low-temperature characteristics.</p>\n </div>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8078021","citationCount":"0","resultStr":"{\"title\":\"Modified Bitumen Materials from Kazakhstani Oilfield\",\"authors\":\"Guzaliya Faritovna Sagitova,&nbsp;Nurzhan Bauyrzhanovich Ainabekov,&nbsp;Nazarbek Mukhaddasuly Daurenbek,&nbsp;Dina Duisenbekkyzy Assylbekova,&nbsp;Ainur Slambekovna Sadyrbayeva,&nbsp;Aliya Erkegulovna Bitemirova,&nbsp;Gulchekhra Abdyrakhmanovna Takibayeva\",\"doi\":\"10.1155/2024/8078021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The oil bitumen BND 90/130, produced at the “LLP SP Caspi Bitum” with the modifier, which consists of copolymer of ethylene with butyl acrylate and glycidyl methacrylate taken in an amount of 0.5–1.6 wt%, and the tire reclaim (4–20 wt%), which is the destructate of mesh elastomers of different chemical nature, was modified; possibility of using the developed bitumen-elastomer binders in road asphalt concrete was justified. Modification of bitumen with a copolymer of ethylene with butyl acrylate and glycidyl methacrylate leads to an improvement in the properties of road bitumen: the softening point, hardness, deformability at low temperatures, elasticity, and adhesion to metal and mineral filler increase. It was shown that ethylene with butyl acrylate and glycidyl methacrylate chemically interacts with the functional groups of bitumen asphaltenes through the epoxy group of glycidyl methacrylate. Analysis of the spectra and group composition indicates an increased content of high molecular weight asphaltenes in the modified bitumen with a slight increase in structuring resins. It has been established that bitumen modified with rubber crumbs of 0.6–1.0 mm in size has high elasticity. The most effective composition of a bitumen-regenerated composite material based on tire reclaim has been determined. In terms of the totality of physicochemical and operational characteristics and comparative cost, the most acceptable is the bitumen-regenerated composition (with a regenerate content of 20%) and is superior in the complex of properties to bitumen modified with an optimal content of ethylene with butyl acrylate and glycidyl methacrylate (1.6%). The technology for modifying bitumen with tire reclaim is less time-consuming, more economically profitable, and environmentally effective, since it utilizes large-tonnage waste of worn-out tires. The resulting bitumen-polymer compositions have a high positive set of properties: softening point, hardness, elasticity, frost resistance, and low-temperature characteristics.</p>\\n </div>\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/8078021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8078021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8078021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

在 "里海沥青有限责任公司 "生产的 BND 90/130 石油沥青中添加了改性剂(由乙烯与丙烯酸丁酯和甲基丙烯酸缩水甘油酯的共聚物组成,添加量为 0.5-1.6 wt%)和轮胎再生料(4-20 wt%),后者是不同化学性质的网状弹性体的分解物。用乙烯与丙烯酸丁酯和甲基丙烯酸缩水甘油酯的共聚物对沥青进行改性,可改善道路沥青的性能:提高软化点、硬度、低温变形性、弹性以及与金属和矿物填料的粘附性。研究表明,乙烯与丙烯酸丁酯和甲基丙烯酸缩水甘油酯通过甲基丙烯酸缩水甘油酯的环氧基团与沥青沥青质的官能团发生化学作用。光谱和基团组成分析表明,改性沥青中高分子量沥青质含量增加,结构树脂含量略有增加。已经证实,用 0.6-1.0 毫米大小的橡胶屑改性的沥青具有高弹性。基于轮胎再生的沥青再生复合材料的最有效成分已经确定。从整个物理化学和操作特性以及比较成本来看,最容易接受的是沥青再生组合物(再生物含量为 20%),其综合特性优于用乙烯与丙烯酸丁酯和甲基丙烯酸缩水甘油酯的最佳含量(1.6%)改性的沥青。用轮胎再生技术改性沥青耗时更短、经济效益更高、对环境更有效,因为它利用的是大吨位的废旧轮胎。由此产生的沥青-聚合物组合物具有一系列积极的特性:软化点、硬度、弹性、抗冻性和低温特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modified Bitumen Materials from Kazakhstani Oilfield

Modified Bitumen Materials from Kazakhstani Oilfield

The oil bitumen BND 90/130, produced at the “LLP SP Caspi Bitum” with the modifier, which consists of copolymer of ethylene with butyl acrylate and glycidyl methacrylate taken in an amount of 0.5–1.6 wt%, and the tire reclaim (4–20 wt%), which is the destructate of mesh elastomers of different chemical nature, was modified; possibility of using the developed bitumen-elastomer binders in road asphalt concrete was justified. Modification of bitumen with a copolymer of ethylene with butyl acrylate and glycidyl methacrylate leads to an improvement in the properties of road bitumen: the softening point, hardness, deformability at low temperatures, elasticity, and adhesion to metal and mineral filler increase. It was shown that ethylene with butyl acrylate and glycidyl methacrylate chemically interacts with the functional groups of bitumen asphaltenes through the epoxy group of glycidyl methacrylate. Analysis of the spectra and group composition indicates an increased content of high molecular weight asphaltenes in the modified bitumen with a slight increase in structuring resins. It has been established that bitumen modified with rubber crumbs of 0.6–1.0 mm in size has high elasticity. The most effective composition of a bitumen-regenerated composite material based on tire reclaim has been determined. In terms of the totality of physicochemical and operational characteristics and comparative cost, the most acceptable is the bitumen-regenerated composition (with a regenerate content of 20%) and is superior in the complex of properties to bitumen modified with an optimal content of ethylene with butyl acrylate and glycidyl methacrylate (1.6%). The technology for modifying bitumen with tire reclaim is less time-consuming, more economically profitable, and environmentally effective, since it utilizes large-tonnage waste of worn-out tires. The resulting bitumen-polymer compositions have a high positive set of properties: softening point, hardness, elasticity, frost resistance, and low-temperature characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Polymer Technology
Advances in Polymer Technology 工程技术-高分子科学
CiteScore
5.50
自引率
0.00%
发文量
70
审稿时长
9 months
期刊介绍: Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信