基于丝网印刷铜网集流体的自平滑锂金属负极,实现锂金属电池的长期安全性

EcoEnergy Pub Date : 2024-05-20 DOI:10.1002/ece2.40
Dongdong Li, Yue He, Bin Chen, Jun Xu, Qingyi Liu, Shengchen Yang, Wen-Yong Lai
{"title":"基于丝网印刷铜网集流体的自平滑锂金属负极,实现锂金属电池的长期安全性","authors":"Dongdong Li,&nbsp;Yue He,&nbsp;Bin Chen,&nbsp;Jun Xu,&nbsp;Qingyi Liu,&nbsp;Shengchen Yang,&nbsp;Wen-Yong Lai","doi":"10.1002/ece2.40","DOIUrl":null,"url":null,"abstract":"<p>Lithium metal is an attractive anode candidate to enable high-energy lithium battery systems. However, nonideal dendrite growth at the anode/separator interface hinders the safe application of lithium metal batteries (LMBs). Three-dimensional (3D) current collectors (CCs) with high specific surface area could afford a crucial effect on suppressing dendrites, yet still subject to large thickness/weight and limited scalability for large-area fabrication. Here, we show an industry-compatible screen-printing technique to prepare ultrathin (∼1.5 μm) and ultralight (∼0.54 mg cm<sup>−2</sup>) Cu mesh on commercial Cu foil to realize a long-term safety of LMBs. In contrast to conventional laboratory level techniques, the screen-printed Cu-mesh CCs (∼8.3 mg cm<sup>−2</sup>), which are even lighter than the original Cu foil (∼8.84 mg cm<sup>−2</sup>), show a high compatibility for large-area fabrication. Meanwhile, the periodic Cu mesh can be also used to regulate the homogeneous distribution of Li-ion flux and thus, be in favor of realizing self-smoothing anodes at even deep and fast plating/stripping of lithium. The resulting lithium anodes demonstrate a long-term cyclic life of ∼840 h at 1 mA cm<sup>−2</sup> with a high Coulombic efficiency of 97.5%. LMBs with Cu-mesh CCs exhibit outstanding capacity retentions of ∼87% after 350 cycles at 1 C and ∼80% after 200 cycles at 5 C, suggesting a significant step of printable 3D CCs toward practical application of high-energy LMBs.</p>","PeriodicalId":100387,"journal":{"name":"EcoEnergy","volume":"2 2","pages":"311-321"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.40","citationCount":"0","resultStr":"{\"title\":\"Self-smoothing lithium metal anode based on screen-printed Cu-mesh current collector for long-term safety of lithium metal batteries\",\"authors\":\"Dongdong Li,&nbsp;Yue He,&nbsp;Bin Chen,&nbsp;Jun Xu,&nbsp;Qingyi Liu,&nbsp;Shengchen Yang,&nbsp;Wen-Yong Lai\",\"doi\":\"10.1002/ece2.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lithium metal is an attractive anode candidate to enable high-energy lithium battery systems. However, nonideal dendrite growth at the anode/separator interface hinders the safe application of lithium metal batteries (LMBs). Three-dimensional (3D) current collectors (CCs) with high specific surface area could afford a crucial effect on suppressing dendrites, yet still subject to large thickness/weight and limited scalability for large-area fabrication. Here, we show an industry-compatible screen-printing technique to prepare ultrathin (∼1.5 μm) and ultralight (∼0.54 mg cm<sup>−2</sup>) Cu mesh on commercial Cu foil to realize a long-term safety of LMBs. In contrast to conventional laboratory level techniques, the screen-printed Cu-mesh CCs (∼8.3 mg cm<sup>−2</sup>), which are even lighter than the original Cu foil (∼8.84 mg cm<sup>−2</sup>), show a high compatibility for large-area fabrication. Meanwhile, the periodic Cu mesh can be also used to regulate the homogeneous distribution of Li-ion flux and thus, be in favor of realizing self-smoothing anodes at even deep and fast plating/stripping of lithium. The resulting lithium anodes demonstrate a long-term cyclic life of ∼840 h at 1 mA cm<sup>−2</sup> with a high Coulombic efficiency of 97.5%. LMBs with Cu-mesh CCs exhibit outstanding capacity retentions of ∼87% after 350 cycles at 1 C and ∼80% after 200 cycles at 5 C, suggesting a significant step of printable 3D CCs toward practical application of high-energy LMBs.</p>\",\"PeriodicalId\":100387,\"journal\":{\"name\":\"EcoEnergy\",\"volume\":\"2 2\",\"pages\":\"311-321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece2.40\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoEnergy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece2.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoEnergy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece2.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂金属是实现高能锂电池系统的理想阳极。然而,阳极/分离器界面的非理想枝晶生长阻碍了锂金属电池(LMB)的安全应用。具有高比表面积的三维(3D)集流体(CC)可在抑制枝晶方面发挥关键作用,但在大面积制造时,其厚度/重量仍然较大,可扩展性有限。在这里,我们展示了一种工业兼容的丝网印刷技术,在商用铜箔上制备超薄(∼1.5 μm)、超轻(∼0.54 mg cm-2)的铜网,以实现 LMB 的长期安全性。与传统的实验室级技术相比,丝网印刷的铜网CC(∼8.3 mg cm-2)甚至比原始铜箔(∼8.84 mg cm-2)更轻,显示了大面积制造的高兼容性。同时,周期性铜网还可用于调节锂离子通量的均匀分布,从而有利于在锂的深度和快速电镀/剥离过程中实现自平滑阳极。所制备的锂阳极在 1 mA cm-2 下的长期循环寿命为 840 小时,库仑效率高达 97.5%。带有铜网CC的锂阳极在1 C条件下循环350次后的容量保持率为87%,在5 C条件下循环200次后的容量保持率为80%,这表明可打印三维CC向高能锂阳极的实际应用迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-smoothing lithium metal anode based on screen-printed Cu-mesh current collector for long-term safety of lithium metal batteries

Self-smoothing lithium metal anode based on screen-printed Cu-mesh current collector for long-term safety of lithium metal batteries

Lithium metal is an attractive anode candidate to enable high-energy lithium battery systems. However, nonideal dendrite growth at the anode/separator interface hinders the safe application of lithium metal batteries (LMBs). Three-dimensional (3D) current collectors (CCs) with high specific surface area could afford a crucial effect on suppressing dendrites, yet still subject to large thickness/weight and limited scalability for large-area fabrication. Here, we show an industry-compatible screen-printing technique to prepare ultrathin (∼1.5 μm) and ultralight (∼0.54 mg cm−2) Cu mesh on commercial Cu foil to realize a long-term safety of LMBs. In contrast to conventional laboratory level techniques, the screen-printed Cu-mesh CCs (∼8.3 mg cm−2), which are even lighter than the original Cu foil (∼8.84 mg cm−2), show a high compatibility for large-area fabrication. Meanwhile, the periodic Cu mesh can be also used to regulate the homogeneous distribution of Li-ion flux and thus, be in favor of realizing self-smoothing anodes at even deep and fast plating/stripping of lithium. The resulting lithium anodes demonstrate a long-term cyclic life of ∼840 h at 1 mA cm−2 with a high Coulombic efficiency of 97.5%. LMBs with Cu-mesh CCs exhibit outstanding capacity retentions of ∼87% after 350 cycles at 1 C and ∼80% after 200 cycles at 5 C, suggesting a significant step of printable 3D CCs toward practical application of high-energy LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信