{"title":"弱电离等离子体和电解质混合物的动力学理论,包括昂萨格矩阵和频散效应","authors":"W. Ebeling","doi":"10.1002/ctpp.202300161","DOIUrl":null,"url":null,"abstract":"<p>We summarize the method of hydrodynamic approximation for weakly ionized plasmas developed with Klimontovich in 1962 and give a generalization to many—component systems using Onsagers matrix theory and including dispersion effects. We develop the conductivity theory of complex plasma and electrolyte mixtures based on the model of charged hard spheres with given non-additive contact distances, including frequency-dependent electric fields. These generalizations are made with the aim to allow applications to complex natural systems as atmospheric plasmas and seawater. Finally, we give as an example a numerical calculation of the single ion conductivities of a six-component seawater model.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202300161","citationCount":"0","resultStr":"{\"title\":\"Kinetic theory of weakly ionized plasma and electrolyte mixtures including Onsager matrix and frequency dispersion effects\",\"authors\":\"W. Ebeling\",\"doi\":\"10.1002/ctpp.202300161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We summarize the method of hydrodynamic approximation for weakly ionized plasmas developed with Klimontovich in 1962 and give a generalization to many—component systems using Onsagers matrix theory and including dispersion effects. We develop the conductivity theory of complex plasma and electrolyte mixtures based on the model of charged hard spheres with given non-additive contact distances, including frequency-dependent electric fields. These generalizations are made with the aim to allow applications to complex natural systems as atmospheric plasmas and seawater. Finally, we give as an example a numerical calculation of the single ion conductivities of a six-component seawater model.</p>\",\"PeriodicalId\":10700,\"journal\":{\"name\":\"Contributions to Plasma Physics\",\"volume\":\"64 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202300161\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202300161\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctpp.202300161","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Kinetic theory of weakly ionized plasma and electrolyte mixtures including Onsager matrix and frequency dispersion effects
We summarize the method of hydrodynamic approximation for weakly ionized plasmas developed with Klimontovich in 1962 and give a generalization to many—component systems using Onsagers matrix theory and including dispersion effects. We develop the conductivity theory of complex plasma and electrolyte mixtures based on the model of charged hard spheres with given non-additive contact distances, including frequency-dependent electric fields. These generalizations are made with the aim to allow applications to complex natural systems as atmospheric plasmas and seawater. Finally, we give as an example a numerical calculation of the single ion conductivities of a six-component seawater model.