碳纤维加固对铝金属基复合材料向上摩擦搅拌连接的影响

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ranjan Kumar Vishwakarma, Surjya K Pal, N. D. Chakladar
{"title":"碳纤维加固对铝金属基复合材料向上摩擦搅拌连接的影响","authors":"Ranjan Kumar Vishwakarma,&nbsp;Surjya K Pal,&nbsp;N. D. Chakladar","doi":"10.1007/s12540-024-01690-0","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing demand for lightweight and high-performance materials aimed at reducing carbon footprints necessitates the development of innovative technologies. In this study, high-strength carbon fibre (CF) was utilized to reinforce the aluminium (Al) matrix for fabricating the metal matrix composite (MMC). It was found that strain, strain rate and temperature gradient play a significant role in non-uniform particle distribution at the advancing and retreating sides of the processed regions. To address these challenges, Upward Friction Stir Processing (UFSP) with a threaded pin tool was proposed to assess the uniformity of the reinforcing carbon fibres on the advancing and retreating sides, which is the novelty in this study. The influence of UFSP tool offset direction on material flow characteristics and particle distribution were analyzed. Carbon fibre agglomeration and band formation within the metal matrix was given special attention during UFSP technique. A double-pass UFSP was introduced which revealed a homogenous dispersion of CF upon microstructural characterisation. Furthermore, results demonstrated a 36% increase in bulk hardness and 54% increase of electrical conductivity compared to base metal. Thus, incorporation of a 2 wt% of CF yielded harder and better electrically conductive UFSP-ed metal matrix composite. This is expected to have a wider application in industrial joining methods while joining of two dissimilar metals or metal based composites.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 11","pages":"3107 - 3126"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Carbon Fibre Reinforcement on an Aluminium Metal Matrix Composite Joint Through Upward Friction Stir Processing\",\"authors\":\"Ranjan Kumar Vishwakarma,&nbsp;Surjya K Pal,&nbsp;N. D. Chakladar\",\"doi\":\"10.1007/s12540-024-01690-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing demand for lightweight and high-performance materials aimed at reducing carbon footprints necessitates the development of innovative technologies. In this study, high-strength carbon fibre (CF) was utilized to reinforce the aluminium (Al) matrix for fabricating the metal matrix composite (MMC). It was found that strain, strain rate and temperature gradient play a significant role in non-uniform particle distribution at the advancing and retreating sides of the processed regions. To address these challenges, Upward Friction Stir Processing (UFSP) with a threaded pin tool was proposed to assess the uniformity of the reinforcing carbon fibres on the advancing and retreating sides, which is the novelty in this study. The influence of UFSP tool offset direction on material flow characteristics and particle distribution were analyzed. Carbon fibre agglomeration and band formation within the metal matrix was given special attention during UFSP technique. A double-pass UFSP was introduced which revealed a homogenous dispersion of CF upon microstructural characterisation. Furthermore, results demonstrated a 36% increase in bulk hardness and 54% increase of electrical conductivity compared to base metal. Thus, incorporation of a 2 wt% of CF yielded harder and better electrically conductive UFSP-ed metal matrix composite. This is expected to have a wider application in industrial joining methods while joining of two dissimilar metals or metal based composites.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"30 11\",\"pages\":\"3107 - 3126\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-024-01690-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01690-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为减少碳足迹,对轻质高性能材料的需求日益增长,这就要求开发创新技术。本研究利用高强度碳纤维(CF)来增强铝(Al)基体,以制造金属基复合材料(MMC)。研究发现,应变、应变率和温度梯度对加工区域前进侧和后退侧的颗粒分布不均匀起着重要作用。为了解决这些难题,本研究提出了使用螺纹销工具进行上向摩擦搅拌加工(UFSP),以评估碳纤维增强材料在前进侧和后退侧的均匀性。研究分析了 UFSP 工具偏移方向对材料流动特性和颗粒分布的影响。在 UFSP 技术中,碳纤维在金属基体中的团聚和带状形成受到了特别关注。引入的双通道超细超硬碳纤维复合材料在进行微观结构表征时显示出碳纤维的均匀分散。此外,结果表明,与基体金属相比,体积硬度提高了 36%,导电率提高了 54%。因此,加入 2 wt% 的 CF 后,UFSP-ed 金属基复合材料的硬度更高,导电性更好。这有望在两种异种金属或金属基复合材料的工业连接方法中得到更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Carbon Fibre Reinforcement on an Aluminium Metal Matrix Composite Joint Through Upward Friction Stir Processing

Effect of Carbon Fibre Reinforcement on an Aluminium Metal Matrix Composite Joint Through Upward Friction Stir Processing

Effect of Carbon Fibre Reinforcement on an Aluminium Metal Matrix Composite Joint Through Upward Friction Stir Processing

The increasing demand for lightweight and high-performance materials aimed at reducing carbon footprints necessitates the development of innovative technologies. In this study, high-strength carbon fibre (CF) was utilized to reinforce the aluminium (Al) matrix for fabricating the metal matrix composite (MMC). It was found that strain, strain rate and temperature gradient play a significant role in non-uniform particle distribution at the advancing and retreating sides of the processed regions. To address these challenges, Upward Friction Stir Processing (UFSP) with a threaded pin tool was proposed to assess the uniformity of the reinforcing carbon fibres on the advancing and retreating sides, which is the novelty in this study. The influence of UFSP tool offset direction on material flow characteristics and particle distribution were analyzed. Carbon fibre agglomeration and band formation within the metal matrix was given special attention during UFSP technique. A double-pass UFSP was introduced which revealed a homogenous dispersion of CF upon microstructural characterisation. Furthermore, results demonstrated a 36% increase in bulk hardness and 54% increase of electrical conductivity compared to base metal. Thus, incorporation of a 2 wt% of CF yielded harder and better electrically conductive UFSP-ed metal matrix composite. This is expected to have a wider application in industrial joining methods while joining of two dissimilar metals or metal based composites.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信