{"title":"基于证据的数控机床液压系统故障树分析","authors":"Hong‐Xia Chen, Sui‐Xin Xie, Jun‐Feng Zhang, Wang‐Hao Chen, Bo Niu, Jiao‐Teng Zhang","doi":"10.1002/qre.3581","DOIUrl":null,"url":null,"abstract":"The hydraulic system is an integral part of CNC machine tools. In analyzing the reliability of machine tool hydraulic systems, their failures are influenced by both aleatory and epistemic uncertainties. This paper utilizes the fault tree analysis method to address failure modes subject to epistemic uncertainty, using the interval rough number scoring method to evaluate the probability of such failures occurring. The resulting reliability calculation is termed as “subjective reliability”. For failure modes influenced by aleatory uncertainty, objective data combined with the Dempster–Shafer evidence theory is used to determine their failure probability, with the corresponding reliability calculation referred to as “objective reliability”. Finally, a comprehensive calculation of both subjective and objective reliability is conducted to determine the overall reliability of the hydraulic system, along with the ranking of the importance of basic events of fault tree. This methodology covers scenarios with small samples, sufficient data, and their combinations, offering extensive application prospects.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"57 20","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence‐based fault tree analysis of the hydraulic system in CNC machine tools\",\"authors\":\"Hong‐Xia Chen, Sui‐Xin Xie, Jun‐Feng Zhang, Wang‐Hao Chen, Bo Niu, Jiao‐Teng Zhang\",\"doi\":\"10.1002/qre.3581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hydraulic system is an integral part of CNC machine tools. In analyzing the reliability of machine tool hydraulic systems, their failures are influenced by both aleatory and epistemic uncertainties. This paper utilizes the fault tree analysis method to address failure modes subject to epistemic uncertainty, using the interval rough number scoring method to evaluate the probability of such failures occurring. The resulting reliability calculation is termed as “subjective reliability”. For failure modes influenced by aleatory uncertainty, objective data combined with the Dempster–Shafer evidence theory is used to determine their failure probability, with the corresponding reliability calculation referred to as “objective reliability”. Finally, a comprehensive calculation of both subjective and objective reliability is conducted to determine the overall reliability of the hydraulic system, along with the ranking of the importance of basic events of fault tree. This methodology covers scenarios with small samples, sufficient data, and their combinations, offering extensive application prospects.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"57 20\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Evidence‐based fault tree analysis of the hydraulic system in CNC machine tools
The hydraulic system is an integral part of CNC machine tools. In analyzing the reliability of machine tool hydraulic systems, their failures are influenced by both aleatory and epistemic uncertainties. This paper utilizes the fault tree analysis method to address failure modes subject to epistemic uncertainty, using the interval rough number scoring method to evaluate the probability of such failures occurring. The resulting reliability calculation is termed as “subjective reliability”. For failure modes influenced by aleatory uncertainty, objective data combined with the Dempster–Shafer evidence theory is used to determine their failure probability, with the corresponding reliability calculation referred to as “objective reliability”. Finally, a comprehensive calculation of both subjective and objective reliability is conducted to determine the overall reliability of the hydraulic system, along with the ranking of the importance of basic events of fault tree. This methodology covers scenarios with small samples, sufficient data, and their combinations, offering extensive application prospects.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.