利用 KNbO3/Bi4O5Br2 II 型异质结增强光催化 N2 固定能力

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Lin Yue, Zhihao Zeng, Xujie Ren, Shude Yuan, Chuanqi Xia, Xin Hu, Leihong Zhao, Lvchao Zhuang, Yiming He
{"title":"利用 KNbO3/Bi4O5Br2 II 型异质结增强光催化 N2 固定能力","authors":"Lin Yue,&nbsp;Zhihao Zeng,&nbsp;Xujie Ren,&nbsp;Shude Yuan,&nbsp;Chuanqi Xia,&nbsp;Xin Hu,&nbsp;Leihong Zhao,&nbsp;Lvchao Zhuang,&nbsp;Yiming He","doi":"10.1007/s11705-024-2424-2","DOIUrl":null,"url":null,"abstract":"<div><p>The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency, thus boosting the performance of photocatalysts. This work presents the synthesis and investigation of a novel KNbO<sub>3</sub>/Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> heterostructure catalyst for photocatalytic N<sub>2</sub>–to–NH<sub>3</sub> conversion under light illumination. While morphology analysis revealed KNbO<sub>3</sub> microcubes embedded within Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> nanosheets, the composite exhibited no significant improvement in specific surface area or optical property compared to Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> due to the relatively wide band gap and low surface area of KNbO<sub>3</sub>. The main contribution lies in the enhanced separation efficiency of photogenerated electrons and holes. Besides, the band structure analysis suggests that KNbO<sub>3</sub> and Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> exhibit suitable band potentials to form a type II heterojunction. Benefiting from the higher Fermi level of KNbO<sub>3</sub> than Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>, the electron drift at the contact region thus occurs and leads to the formation of a built-in electric field with the direction from KNbO<sub>3</sub> to Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>, accelerating electron migration and improving the operational efficiency of the photocatalysts. Consequently, the KNbO<sub>3</sub>/Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> catalyst shows an increased photoactivity, achieving an NH<sub>3</sub> generation rate 1.78 and 1.58 times those of KNbO<sub>3</sub> and Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>, respectively. This work may offer valuable insights for the design and synthesis of heterojunction composite photocatalysts.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photocatalytic N2 fixation using KNbO3/Bi4O5Br2 type II heterojunction\",\"authors\":\"Lin Yue,&nbsp;Zhihao Zeng,&nbsp;Xujie Ren,&nbsp;Shude Yuan,&nbsp;Chuanqi Xia,&nbsp;Xin Hu,&nbsp;Leihong Zhao,&nbsp;Lvchao Zhuang,&nbsp;Yiming He\",\"doi\":\"10.1007/s11705-024-2424-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency, thus boosting the performance of photocatalysts. This work presents the synthesis and investigation of a novel KNbO<sub>3</sub>/Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> heterostructure catalyst for photocatalytic N<sub>2</sub>–to–NH<sub>3</sub> conversion under light illumination. While morphology analysis revealed KNbO<sub>3</sub> microcubes embedded within Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> nanosheets, the composite exhibited no significant improvement in specific surface area or optical property compared to Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> due to the relatively wide band gap and low surface area of KNbO<sub>3</sub>. The main contribution lies in the enhanced separation efficiency of photogenerated electrons and holes. Besides, the band structure analysis suggests that KNbO<sub>3</sub> and Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> exhibit suitable band potentials to form a type II heterojunction. Benefiting from the higher Fermi level of KNbO<sub>3</sub> than Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>, the electron drift at the contact region thus occurs and leads to the formation of a built-in electric field with the direction from KNbO<sub>3</sub> to Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>, accelerating electron migration and improving the operational efficiency of the photocatalysts. Consequently, the KNbO<sub>3</sub>/Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub> catalyst shows an increased photoactivity, achieving an NH<sub>3</sub> generation rate 1.78 and 1.58 times those of KNbO<sub>3</sub> and Bi<sub>4</sub>O<sub>5</sub>Br<sub>2</sub>, respectively. This work may offer valuable insights for the design and synthesis of heterojunction composite photocatalysts.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2424-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2424-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

制造异质结催化剂是提高电荷分离效率的有效策略,从而提升光催化剂的性能。本研究介绍了一种新型 KNbO3/Bi4O5Br2 异质结构催化剂的合成和研究,该催化剂可在光照下实现 N2 到 NH3 的光催化转化。虽然形貌分析显示 Bi4O5Br2 纳米片中嵌入了 KNbO3 微立方体,但与 Bi4O5Br2 相比,由于 KNbO3 的带隙相对较宽且比表面积较低,该复合材料在比表面积或光学性能方面并无明显改善。其主要贡献在于光生电子和空穴的分离效率得到了提高。此外,能带结构分析表明,KNbO3 和 Bi4O5Br2 表现出适合形成 II 型异质结的能带电位。由于 KNbO3 的费米级高于 Bi4O5Br2,电子在接触区发生漂移,从而形成从 KNbO3 到 Bi4O5Br2 方向的内置电场,加速了电子迁移,提高了光催化剂的运行效率。因此,KNbO3/Bi4O5Br2 催化剂显示出更高的光活性,其 NH3 生成率分别是 KNbO3 和 Bi4O5Br2 的 1.78 倍和 1.58 倍。这项研究为设计和合成异质结复合光催化剂提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced photocatalytic N2 fixation using KNbO3/Bi4O5Br2 type II heterojunction

Enhanced photocatalytic N2 fixation using KNbO3/Bi4O5Br2 type II heterojunction

The fabrication of heterojunction catalysts is an effective strategy to enhance charge separation efficiency, thus boosting the performance of photocatalysts. This work presents the synthesis and investigation of a novel KNbO3/Bi4O5Br2 heterostructure catalyst for photocatalytic N2–to–NH3 conversion under light illumination. While morphology analysis revealed KNbO3 microcubes embedded within Bi4O5Br2 nanosheets, the composite exhibited no significant improvement in specific surface area or optical property compared to Bi4O5Br2 due to the relatively wide band gap and low surface area of KNbO3. The main contribution lies in the enhanced separation efficiency of photogenerated electrons and holes. Besides, the band structure analysis suggests that KNbO3 and Bi4O5Br2 exhibit suitable band potentials to form a type II heterojunction. Benefiting from the higher Fermi level of KNbO3 than Bi4O5Br2, the electron drift at the contact region thus occurs and leads to the formation of a built-in electric field with the direction from KNbO3 to Bi4O5Br2, accelerating electron migration and improving the operational efficiency of the photocatalysts. Consequently, the KNbO3/Bi4O5Br2 catalyst shows an increased photoactivity, achieving an NH3 generation rate 1.78 and 1.58 times those of KNbO3 and Bi4O5Br2, respectively. This work may offer valuable insights for the design and synthesis of heterojunction composite photocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信