{"title":"层状双氢氧化物及其定位对 PBAT/PPC 复合材料结构和性能的影响","authors":"Guo Jiang, Shengying Wang, Yihong Ren","doi":"10.1002/macp.202400078","DOIUrl":null,"url":null,"abstract":"<p>The blends of poly(butylene adipate-co-terephthalate) (PBAT), poly(propylene carbonate) (PPC), chain extender (ADR) and layered double hydroxides (LDH) are prepared by different extrusion methods. Effects of LDH and its distribution on rheology, phase morphology, mechanical properties, water vapor barrier properties and food preservation properties are investigated. Results show that when PBAT, PPC, and LDH are mixed directly, LDH is preferentially distributed in the PBAT phase. When LDH are mixed with PPC firstly and then further with PBAT, LDH mostly migrates to the interface of PBAT and PPC. The epoxy groups of ADR react with the terminal groups of the polymers to improve the interfacial compatibility. Adding LDH, the mechanical properties and barrier properties of the materials are improved and by premixing of PPC and LDH, properties of composites are further improved. Compared with PBAT/PPC blends, the tensile strength and elongation at break of PBAT/PPC(LDH-0.5)/ADR increased by 25.2% and 15.3%, respectively. The banana packaged in PBAT/PPC/LDH films maintains good freshness. It illustrates that PBAT/PPC(LDH)/ADR composites have a good application prospect in the field of barrier and food packaging based on their excellent mechanical, barrier, and preservation properties.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"225 16","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Layered Double Hydroxide and Its Localization on the Structure and Properties of PBAT/PPC Composites\",\"authors\":\"Guo Jiang, Shengying Wang, Yihong Ren\",\"doi\":\"10.1002/macp.202400078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The blends of poly(butylene adipate-co-terephthalate) (PBAT), poly(propylene carbonate) (PPC), chain extender (ADR) and layered double hydroxides (LDH) are prepared by different extrusion methods. Effects of LDH and its distribution on rheology, phase morphology, mechanical properties, water vapor barrier properties and food preservation properties are investigated. Results show that when PBAT, PPC, and LDH are mixed directly, LDH is preferentially distributed in the PBAT phase. When LDH are mixed with PPC firstly and then further with PBAT, LDH mostly migrates to the interface of PBAT and PPC. The epoxy groups of ADR react with the terminal groups of the polymers to improve the interfacial compatibility. Adding LDH, the mechanical properties and barrier properties of the materials are improved and by premixing of PPC and LDH, properties of composites are further improved. Compared with PBAT/PPC blends, the tensile strength and elongation at break of PBAT/PPC(LDH-0.5)/ADR increased by 25.2% and 15.3%, respectively. The banana packaged in PBAT/PPC/LDH films maintains good freshness. It illustrates that PBAT/PPC(LDH)/ADR composites have a good application prospect in the field of barrier and food packaging based on their excellent mechanical, barrier, and preservation properties.</p>\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"225 16\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400078\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400078","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of Layered Double Hydroxide and Its Localization on the Structure and Properties of PBAT/PPC Composites
The blends of poly(butylene adipate-co-terephthalate) (PBAT), poly(propylene carbonate) (PPC), chain extender (ADR) and layered double hydroxides (LDH) are prepared by different extrusion methods. Effects of LDH and its distribution on rheology, phase morphology, mechanical properties, water vapor barrier properties and food preservation properties are investigated. Results show that when PBAT, PPC, and LDH are mixed directly, LDH is preferentially distributed in the PBAT phase. When LDH are mixed with PPC firstly and then further with PBAT, LDH mostly migrates to the interface of PBAT and PPC. The epoxy groups of ADR react with the terminal groups of the polymers to improve the interfacial compatibility. Adding LDH, the mechanical properties and barrier properties of the materials are improved and by premixing of PPC and LDH, properties of composites are further improved. Compared with PBAT/PPC blends, the tensile strength and elongation at break of PBAT/PPC(LDH-0.5)/ADR increased by 25.2% and 15.3%, respectively. The banana packaged in PBAT/PPC/LDH films maintains good freshness. It illustrates that PBAT/PPC(LDH)/ADR composites have a good application prospect in the field of barrier and food packaging based on their excellent mechanical, barrier, and preservation properties.
期刊介绍:
Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.