Rasool Mohammadi Abokheili, Naser Kordani, H. Aghajani Derazkola, Jafar Nejadali
{"title":"通过熔融沉积模型制造的聚合物-金属混合物界面粘合的实验研究","authors":"Rasool Mohammadi Abokheili, Naser Kordani, H. Aghajani Derazkola, Jafar Nejadali","doi":"10.1177/14644207241252907","DOIUrl":null,"url":null,"abstract":"In this paper, the fabrication of polymer-metal hybrids by fused deposition modeling was evaluated. 6061 aluminum alloy and polylactic acid were used in the manufacturing process. Also, to strengthen the bonding between the metal and polymer components, a two-component epoxy adhesive was used. The pull-off adhesion test was performed to evaluate the interfacial bonding strength of the specimens. In this study, the effect of bed temperature, print speed, printer nozzle diameter, and aluminum sheet surface roughness on the bond strength of polymer-metal hybrids has been investigated. The results showed that increasing the bed temperature, and aluminum sheet surface roughness, and also decreasing the print speed led to increase the bond strength of polymer-metal hybrids. Finally, by using the experimental data, an optimal specimen was produced. The interfacial bonding strength of the optimal specimen is about 64% stronger than the initial specimen.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"19 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of the polymer-metal hybrids interfacial bonding fabricated by fused deposition modeling\",\"authors\":\"Rasool Mohammadi Abokheili, Naser Kordani, H. Aghajani Derazkola, Jafar Nejadali\",\"doi\":\"10.1177/14644207241252907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the fabrication of polymer-metal hybrids by fused deposition modeling was evaluated. 6061 aluminum alloy and polylactic acid were used in the manufacturing process. Also, to strengthen the bonding between the metal and polymer components, a two-component epoxy adhesive was used. The pull-off adhesion test was performed to evaluate the interfacial bonding strength of the specimens. In this study, the effect of bed temperature, print speed, printer nozzle diameter, and aluminum sheet surface roughness on the bond strength of polymer-metal hybrids has been investigated. The results showed that increasing the bed temperature, and aluminum sheet surface roughness, and also decreasing the print speed led to increase the bond strength of polymer-metal hybrids. Finally, by using the experimental data, an optimal specimen was produced. The interfacial bonding strength of the optimal specimen is about 64% stronger than the initial specimen.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"19 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14644207241252907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14644207241252907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Experimental investigation of the polymer-metal hybrids interfacial bonding fabricated by fused deposition modeling
In this paper, the fabrication of polymer-metal hybrids by fused deposition modeling was evaluated. 6061 aluminum alloy and polylactic acid were used in the manufacturing process. Also, to strengthen the bonding between the metal and polymer components, a two-component epoxy adhesive was used. The pull-off adhesion test was performed to evaluate the interfacial bonding strength of the specimens. In this study, the effect of bed temperature, print speed, printer nozzle diameter, and aluminum sheet surface roughness on the bond strength of polymer-metal hybrids has been investigated. The results showed that increasing the bed temperature, and aluminum sheet surface roughness, and also decreasing the print speed led to increase the bond strength of polymer-metal hybrids. Finally, by using the experimental data, an optimal specimen was produced. The interfacial bonding strength of the optimal specimen is about 64% stronger than the initial specimen.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.