{"title":"不同岩石介质中频域参数的衰减特性研究","authors":"Xiling Liu, Huini Liu, Feng Xiong, Qin Xie, Yuchen Zhong, Qi Hao","doi":"10.2113/2024/lithosphere_2024_113","DOIUrl":null,"url":null,"abstract":"\n This study examines the frequency attenuation characteristics of elastic waves in marble, granite, and red sandstone through laboratory tests and numerical simulations based on ABAQUS software on eight rock samples. The correlation between the distance of the decay of the peak frequency and the petrophysical and mechanical parameters is also analyzed. The results show that elastic waves undergo stepwise attenuation of their peak frequency during laboratory attenuation tests. This finding was confirmed by numerical simulations. As elastic waves propagate through a rock medium, the amplitude of the high-frequency peak area near the excitation frequency decreases rapidly, while the proportion of low-frequency signals increases. As the propagation continues, the signal spectrum is dominated by low-frequency components, resulting in a stepwise attenuation of the peak frequency. It has been observed that the step decay distance of the peak frequency of elastic waves varies with the degree of particle bonding, which can be used to characterize the attenuation properties of elastic waves in a medium.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the Attenuation Characteristics of Frequency Domain Parameters in Different Rock Medium\",\"authors\":\"Xiling Liu, Huini Liu, Feng Xiong, Qin Xie, Yuchen Zhong, Qi Hao\",\"doi\":\"10.2113/2024/lithosphere_2024_113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study examines the frequency attenuation characteristics of elastic waves in marble, granite, and red sandstone through laboratory tests and numerical simulations based on ABAQUS software on eight rock samples. The correlation between the distance of the decay of the peak frequency and the petrophysical and mechanical parameters is also analyzed. The results show that elastic waves undergo stepwise attenuation of their peak frequency during laboratory attenuation tests. This finding was confirmed by numerical simulations. As elastic waves propagate through a rock medium, the amplitude of the high-frequency peak area near the excitation frequency decreases rapidly, while the proportion of low-frequency signals increases. As the propagation continues, the signal spectrum is dominated by low-frequency components, resulting in a stepwise attenuation of the peak frequency. It has been observed that the step decay distance of the peak frequency of elastic waves varies with the degree of particle bonding, which can be used to characterize the attenuation properties of elastic waves in a medium.\",\"PeriodicalId\":18147,\"journal\":{\"name\":\"Lithosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/2024/lithosphere_2024_113\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/2024/lithosphere_2024_113","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Research on the Attenuation Characteristics of Frequency Domain Parameters in Different Rock Medium
This study examines the frequency attenuation characteristics of elastic waves in marble, granite, and red sandstone through laboratory tests and numerical simulations based on ABAQUS software on eight rock samples. The correlation between the distance of the decay of the peak frequency and the petrophysical and mechanical parameters is also analyzed. The results show that elastic waves undergo stepwise attenuation of their peak frequency during laboratory attenuation tests. This finding was confirmed by numerical simulations. As elastic waves propagate through a rock medium, the amplitude of the high-frequency peak area near the excitation frequency decreases rapidly, while the proportion of low-frequency signals increases. As the propagation continues, the signal spectrum is dominated by low-frequency components, resulting in a stepwise attenuation of the peak frequency. It has been observed that the step decay distance of the peak frequency of elastic waves varies with the degree of particle bonding, which can be used to characterize the attenuation properties of elastic waves in a medium.
期刊介绍:
The open access journal will have an expanded scope covering research in all areas of earth, planetary, and environmental sciences, providing a unique publishing choice for authors in the geoscience community.