利用长短期记忆神经网络的 P 波数据可变快照预测强震的峰值地面加速度

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
John Owusu Duah, Ofosu Osei, Stephen Osafo-Gyamfi
{"title":"利用长短期记忆神经网络的 P 波数据可变快照预测强震的峰值地面加速度","authors":"John Owusu Duah, Ofosu Osei, Stephen Osafo-Gyamfi","doi":"10.1785/0220230427","DOIUrl":null,"url":null,"abstract":"\n Conventional earthquake early warning systems (EEWS) rely on mathematical functions that utilize P-wave parameters extracted over a 3 s window to estimate peak ground acceleration (PGA). Advancements in the capabilities of deep neural networks to approximate universal functions, coupled with the availability of strong seismic event data, offer an unprecedented opportunity to evaluate the relationship between variable snapshots of P-wave data and the PGA of strong-motion earthquakes. This convergence of technology and data opens new avenues for research into utilizing smaller snapshots of P-wave in EEWS. Our study centers on the utilization of a long short-term memory (LSTM) neural network to model long dependencies within the P-wave of 1839 earthquakes recorded by the Kiyonshin Network (K-NET) for the prediction of PGA of S waves. Our methodology involves experiments that ultimately evaluate the network’s performance on 4, 3, and 2 s of P-wave snapshots. Our findings indicate that there is sufficient information in 2 s of temporal accelerometer readings after the onset of P waves to predict PGA accurately with an LSTM network.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Peak Ground Acceleration of Strong-Motion Earthquakes Using Variable Snapshots of P-Wave Data with Long Short-Term Memory Neural Network\",\"authors\":\"John Owusu Duah, Ofosu Osei, Stephen Osafo-Gyamfi\",\"doi\":\"10.1785/0220230427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Conventional earthquake early warning systems (EEWS) rely on mathematical functions that utilize P-wave parameters extracted over a 3 s window to estimate peak ground acceleration (PGA). Advancements in the capabilities of deep neural networks to approximate universal functions, coupled with the availability of strong seismic event data, offer an unprecedented opportunity to evaluate the relationship between variable snapshots of P-wave data and the PGA of strong-motion earthquakes. This convergence of technology and data opens new avenues for research into utilizing smaller snapshots of P-wave in EEWS. Our study centers on the utilization of a long short-term memory (LSTM) neural network to model long dependencies within the P-wave of 1839 earthquakes recorded by the Kiyonshin Network (K-NET) for the prediction of PGA of S waves. Our methodology involves experiments that ultimately evaluate the network’s performance on 4, 3, and 2 s of P-wave snapshots. Our findings indicate that there is sufficient information in 2 s of temporal accelerometer readings after the onset of P waves to predict PGA accurately with an LSTM network.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1785/0220230427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0220230427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

传统的地震预警系统(EEWS)依赖于数学函数,这些函数利用在 3 秒窗口内提取的 P 波参数来估算峰值地面加速度(PGA)。深度神经网络近似通用函数的能力不断进步,加上强震事件数据的可用性,为评估 P 波数据的可变快照与强震的峰值地面加速度之间的关系提供了前所未有的机会。这种技术和数据的融合为研究在 EEWS 中利用较小的 P 波快照开辟了新的途径。我们的研究重点是利用长短期记忆(LSTM)神经网络对 Kiyonshin 网络(K-NET)记录的 1839 次地震的 P 波内的长依赖关系进行建模,以预测 S 波的 PGA。我们的方法包括通过实验最终评估网络在 4 秒、3 秒和 2 秒 P 波快照上的性能。我们的研究结果表明,在 P 波发生后 2 秒钟的时间加速度计读数中有足够的信息,可以通过 LSTM 网络准确预测 PGA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Peak Ground Acceleration of Strong-Motion Earthquakes Using Variable Snapshots of P-Wave Data with Long Short-Term Memory Neural Network
Conventional earthquake early warning systems (EEWS) rely on mathematical functions that utilize P-wave parameters extracted over a 3 s window to estimate peak ground acceleration (PGA). Advancements in the capabilities of deep neural networks to approximate universal functions, coupled with the availability of strong seismic event data, offer an unprecedented opportunity to evaluate the relationship between variable snapshots of P-wave data and the PGA of strong-motion earthquakes. This convergence of technology and data opens new avenues for research into utilizing smaller snapshots of P-wave in EEWS. Our study centers on the utilization of a long short-term memory (LSTM) neural network to model long dependencies within the P-wave of 1839 earthquakes recorded by the Kiyonshin Network (K-NET) for the prediction of PGA of S waves. Our methodology involves experiments that ultimately evaluate the network’s performance on 4, 3, and 2 s of P-wave snapshots. Our findings indicate that there is sufficient information in 2 s of temporal accelerometer readings after the onset of P waves to predict PGA accurately with an LSTM network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信